1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
High efficiency two-dimensional grating reflectors with angularly tunable polarization efficiency
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/16/10.1063/1.4802883
1.
1. J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, Appl. Phys. Lett. 101, 041905 (2012).
http://dx.doi.org/10.1063/1.4738989
2.
2. D. F. McGuigan, C. C. Lam, R. Q. Gram, A. W. Hoffman, D. H. Douglas, and H. W. Gutche, J. Low Temp. Phys. 30, 621 (1978).
http://dx.doi.org/10.1007/BF00116202
3.
3. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, Nat. Photonics 6, 687 (2012).
http://dx.doi.org/10.1038/nphoton.2012.217
4.
4. M. Punturo, M. Abernathy, F. Acernese, B. Allen, N. Andersson, K. Arun, F. Barone, B. Barr, M. Barsuglia, M. Beker et al., Classical Quantum Gravity 27, 194002 (2010).
http://dx.doi.org/10.1088/0264-9381/27/19/194002
5.
5. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photonics 1, 119 (2007).
http://dx.doi.org/10.1038/nphoton.2006.80
6.
6. Y. Kanamori, M. Shimono, and K. Hane, IEEE Photon. Technol. Lett. 18, 2126 (2006).
http://dx.doi.org/10.1109/LPT.2006.883208
7.
7. S. Steiner, S. Kroker, T. Käsebier, E.-B. Kley, and A. Tünnermann, Opt. Express 20, 22555 (2012).
http://dx.doi.org/10.1364/OE.20.022555
8.
8. K. J. Lee, J. Curzan, M. Shokooh-Saremi, and R. Magnusson, Appl. Phys. Lett. 98, 211112 (2011).
http://dx.doi.org/10.1063/1.3594244
9.
9. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, Nat. Photonics 4, 466 (2010).
http://dx.doi.org/10.1038/nphoton.2010.116
10.
10. L. Carletti, R. Malureanu, J. Mork, and I.-S. Chung, Opt. Express 19, 23567 (2011).
http://dx.doi.org/10.1364/OE.19.023567
11.
11. A. Sharon, D. Rosenblatt, and A. A. Friesem, J. Opt. Soc. Am. A 14, 2985 (1997).
http://dx.doi.org/10.1364/JOSAA.14.002985
12.
12. L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).
http://dx.doi.org/10.1016/0030-4018(85)90134-8
13.
13. P. S. Priambodo, T. A. Maldonado, and R. Magnusson, Appl. Phys. Lett. 83, 3248 (2003).
http://dx.doi.org/10.1063/1.1618930
14.
14. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, Opt. Express 18, 16973 (2010).
http://dx.doi.org/10.1364/OE.18.016973
15.
15. F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, Phys. Rev. Lett. 104, 163903 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.163903
16.
16. R. Magnusson and M. Shokooh-Saremi, Opt. Express 16, 3456 (2008).
http://dx.doi.org/10.1364/OE.16.003456
17.
17. P. Lalanne, J. P. Hugonin, and P. Chavel, J. Lightwave Technol. 24, 2442 (2006).
http://dx.doi.org/10.1109/JLT.2006.874555
18.
18. S. Kroker, F. Brückner, E.-B. Kley, and A. Tünnermann, Opt. Lett. 36, 537 (2011).
http://dx.doi.org/10.1364/OL.36.000537
19.
19. S. Kroker, T. Käsebier, T. Weber, S. Steiner, F. Fuchs, E.-B. Kley, and A. Tünnermann, Proc. SPIE 8270, 82700P (2012).
http://dx.doi.org/10.1117/12.908145
20.
20. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 71, 811 (1981).
http://dx.doi.org/10.1364/JOSA.71.000811
21.
21. P. Lalanne and D. Lemercier-Lalanne, J. Mod. Opt. 43, 2063 (1996).
http://dx.doi.org/10.1080/09500349608232871
22.
22. G. Lifante, Phys. Scr. T118, 72 (2005).
http://dx.doi.org/10.1238/Physica.Topical.118a00072
23.
23. K. R. Catchpole and M. A. Green, J. Appl. Phys. 101, 063105 (2007).
http://dx.doi.org/10.1063/1.2710765
24.
24. H. Rhee, H. Kwon, H. Kim, J. Yoo, and J. W. Kim, J. Vac. Sci. Technol. B 26, 576 (2008).
http://dx.doi.org/10.1116/1.2884763
25.
25. S. Kroker, T. Käsebier, F. Brückner, F. Fuchs, E.-B. Kley, and A. Tünnermann, Opt. Express 19, 16466 (2011).
http://dx.doi.org/10.1364/OE.19.016466
26.
26. K.-X. Sun and R.-L. Beyer, Opt. Lett. 23, 567 (1998).
http://dx.doi.org/10.1364/OL.23.000567
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/16/10.1063/1.4802883
Loading
/content/aip/journal/apl/102/16/10.1063/1.4802883
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/16/10.1063/1.4802883
2013-04-25
2014-12-23

Abstract

We report on two-dimensional high-contrast subwavelength gratings with a polarization efficiency that is tunable in the angular spectrum. Due to the high index contrast it is possible to realize highly efficient reflectors with nearly angular independent reflection for light with transverse-electric polarization. Simultaneously, for transverse-magnetic polarized light the minimum and maximum reflectance can be tuned to a defined angle of incidence. Configurations with minimized and maximized polarization efficiencies at incidence angles of and are exemplified for a design wavelength of 1550 nm. For the case of minimum polarization efficiency we present the experimental results for a non-monolithic and a monolithic realization.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/16/1.4802883.html;jsessionid=4uolj3uofifb8.x-aip-live-03?itemId=/content/aip/journal/apl/102/16/10.1063/1.4802883&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High efficiency two-dimensional grating reflectors with angularly tunable polarization efficiency
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/16/10.1063/1.4802883
10.1063/1.4802883
SEARCH_EXPAND_ITEM