1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Efficient polymer solar cells with a solution-processed gold chloride as an anode interfacial modifier
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/16/10.1063/1.4803039
1.
1. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
http://dx.doi.org/10.1126/science.270.5243.1789
2.
2. C. J. Brabec, V. Dyakonov, and U. Scherf, Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies (Wiley VCH, Weinheim, Germany, 2008).
3.
3. K. Norman, M. V. Madsen, S. A. Gevorgyan, and F. C. Krebs, J. Am. Chem. Soc. 132, 16883 (2010).
http://dx.doi.org/10.1021/ja106299g
4.
4. M. G. Kang, M. S. Kim, J. Kim, and L. J. Guo, Adv. Mater. 20, 4408 (2008).
http://dx.doi.org/10.1002/adma.200800750
5.
5. S.-I. Na, S.-S. Kim, J. Jo, and D.-Y. Kim, Adv. Mater. 20, 4061 (2008).
http://dx.doi.org/10.1002/adma.200800338
6.
6. F. C. Krebs, T. D. Nielsen, J. Fyenbo, M. Wadstrøm, and M. S. Pedersen, Energy Environ. Sci. 3, 512 (2010).
http://dx.doi.org/10.1039/b918441d
7.
7. L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, Nat. Photonics 6, 180 (2012).
http://dx.doi.org/10.1038/nphoton.2011.356
8.
8. R. Søndergaard, M. Helgesen, M. Jørgensen, and F. C. Krebs, Adv. Energy Mater. 1, 68 (2011).
http://dx.doi.org/10.1002/aenm.201000007
9.
9. H. Ma, H. L. Yip, F. Huang, and A. K. Y. Jen, Adv. Funct. Mater. 20, 1371 (2010).
http://dx.doi.org/10.1002/adfm.200902236
10.
10. R. Steim, F. R. Kogler, and C. J. Brabec, J. Mater. Chem. 20, 2499 (2010).
http://dx.doi.org/10.1039/b921624c
11.
11. L. M. Chen, Z. Hong, G. Li, and Y. Yang, Adv. Mater. 21, 1434 (2009).
http://dx.doi.org/10.1002/adma.200802854
12.
12. S.-I. Na, T. S. Kim, S. H. Oh, J. K. Kim, S. S. Kim, and D. Y. Kim, Appl. Phys. Lett. 97, 223305 (2010).
http://dx.doi.org/10.1063/1.3522893
13.
13. C. He, C. Zhong, H. Wu, R. Yang, W. Yang, F. Huang, G. C. Bazan, and Y. Cao, J. Mater. Chem. 20, 2617 (2010).
http://dx.doi.org/10.1039/b921775d
14.
14. Y. Gao, H.-L. Yip, S. K. Hau, K. M. O'Malley, N. C. Cho, H. Z. Chen, and A. K.-Y. Jen, Appl. Phys. Lett. 97, 203306 (2010).
http://dx.doi.org/10.1063/1.3507388
15.
15. J.-M. Yun, J.-S. Yeo, J. Kim, H.-G. Jeong, D.-Y. Kim, Y.-J. Noh, S.-S. Kim, B.-C. Ku, and S.-I. Na, Adv. Mater. 23, 4923 (2011).
http://dx.doi.org/10.1002/adma.201102207
16.
16. C. J. Ko, Y. K. Lin, F. C. Chen, and C. W. Chu, Appl. Phys. Lett. 90, 063509 (2007).
http://dx.doi.org/10.1063/1.2437703
17.
17. F. L. Zhang, A. Gadisa, O. Inganas, M. Svensson, and M. R. Andersson, Appl. Phys. Lett. 84, 3906 (2004).
http://dx.doi.org/10.1063/1.1739279
18.
18. A. W. Hains, J. Liu, A. B. F. Martinson, M. D. Irwin, and T. J. Marks, Adv. Funct. Mater. 20, 595 (2010).
http://dx.doi.org/10.1002/adfm.200901045
19.
19. K. C. Kwon, K. S. Choi, and S. Y. Kim, Adv. Funct. Mater. 22, 4724 (2012).
http://dx.doi.org/10.1002/adfm.201200997
20.
20. S. M. Kim, K. K. Kim, Y. W. Jo, M. H. Park, S. J. Chae, D. L. Duong, C. W. Yang, J. Kong, and Y. H. Lee, Acs Nano. 5, 1236 (2011).
http://dx.doi.org/10.1021/nn1028532
21.
21. Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L. J. Li, and J. Kong, ACS Nano 4, 2689 (2010).
http://dx.doi.org/10.1021/nn1005478
22.
22. S.-I. Na, G. Wang, S.-S. Kim, T.-W. Kim, S.-H. Oh, B.-K. Yu, T. Lee, and D.-Y. Kim, J. Mater. Chem. 19, 9045 (2009).
http://dx.doi.org/10.1039/b915756e
23.
23. J.-S. Yeo, J.-M. Yun, D.-Y. Kim, S. Park, S.-S. Kim, M.-H. Yoon, T.-W. Kim, and S.-I. Na, ACS Appl. Mater. Interfaces 4, 2551 (2012).
http://dx.doi.org/10.1021/am300231v
24.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/16/10.1063/1.4803039
Loading
/content/aip/journal/apl/102/16/10.1063/1.4803039
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/16/10.1063/1.4803039
2013-04-23
2014-09-02

Abstract

The use of a solution-processed gold chloride (AuCl3) as an anode interfacial modifier was investigated for high-performance polymer solar cells (PSCs). Kelvin probe, 4-point probe, and X-ray photoelectron spectroscopy studies demonstrated that AuCl3 increases the indium-tin-oxide (ITO) work-function and decreases the ITO sheet resistance, because of Au nanoparticle formation and Cl adsorption by the AuCl3 treatment to induce a p-doping effect, thereby improving the built-in potential and interface resistance. As a result, the introduction of AuCl3 by simple solution processing remarkably improved cell-performances, indicating that AuCl3 is an efficient anode interfacial modifier for enhancing PSC-performance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/16/1.4803039.html;jsessionid=17bxelx9rpfir.x-aip-live-03?itemId=/content/aip/journal/apl/102/16/10.1063/1.4803039&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Efficient polymer solar cells with a solution-processed gold chloride as an anode interfacial modifier
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/16/10.1063/1.4803039
10.1063/1.4803039
SEARCH_EXPAND_ITEM