1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Quantized conductance and field-effect topological quantum transistor in silicene nanoribbons
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/17/10.1063/1.4803010
1.
1. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. L. Lay, Phys. Rev. Lett. 108, 155501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.155501
2.
2. A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Yamada-Takamura, Phys. Rev. Lett. 108, 245501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.245501
3.
3. C.-L. Lin, R. Arafune, K. Kawahara, N. Tsukahara, E. Minamitani, Y. Kim, N. Takagi, and M. Kawai, Appl. Phys. Express 5, 045802 (2012).
http://dx.doi.org/10.1143/APEX.5.045802
4.
4. C.-C. Liu, W. Feng, and Y. Yao, Phys. Rev. Lett. 107, 076802 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.076802
5.
5. M. Ezawa, New J. Phys. 14, 033003 (2012).
http://dx.doi.org/10.1088/1367-2630/14/3/033003
6.
6. M. Ezawa, Phys. Rev. Lett. 109, 055502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.055502
7.
7. M. Ezawa, Phys. Rev. Lett. 110, 026603 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.026603
8.
8. M. Ezawa, Eur. Phys. J. B 85, 363 (2012).
http://dx.doi.org/10.1140/epjb/e2012-30577-0
9.
9. M. Ezawa, Phys. Rev. B 86, 161407R (2012).
http://dx.doi.org/10.1103/PhysRevB.86.161407
10.
10. M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996).
http://dx.doi.org/10.1143/JPSJ.65.1920
11.
11. M. Ezawa, Phys. Rev. B 73, 045432 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.045432
12.
12. L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.235411
13.
13. N. M. R. Peres, A. H. Castro Neto, and F. Guinea, Phys. Rev. B 73, 195411 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.195411
14.
14. E. Prodan, Phys. Rev. B 80, 125327 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.125327
15.
15. M. Z. Hasan and C. Kane, Rev. Mod. Phys. 82, 3045 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.3045
16.
16. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.1057
17.
17. M. Ezawa, Phys. Rev. B 87, 155415 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.155415
18.
18. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, England, 1995);
18. S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, England, 2005).
19.
19. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005);
http://dx.doi.org/10.1103/PhysRevLett.95.226801
19. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.146802
20.
20. C.-C. Liu, H. Jiang, and Y. Yao, Phys. Rev. B 84, 195430 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.195430
21.
21. F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.2015
22.
22. T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Phys. Rev. B 84, 235108 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.235108
23.
23. M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, J. Phys. F: Met. Phys. 15, 851 (1985).
http://dx.doi.org/10.1088/0305-4608/15/4/009
24.
24. F. Muñoz-Rojas, D. Jacob, J. Fernández-Rossier, and J. J. Palacios, Phys. Rev. B 74, 195417 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.195417
25.
25. L. P. Zârbo and B. K. Nikolić, EPL 80, 47001 (2007):
http://dx.doi.org/10.1209/0295-5075/80/47001
25. D. A. Areshkin and B. K. Nikolić, Phys. Rev. B 79, 205430 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.205430
26.
26. T. C. Li and S.-P. Lu, Phys. Rev. B 77, 085408 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.085408
27.
27. M. Ezawa and N. Nagaosa, e-print arXiv:1301.6337.
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/17/10.1063/1.4803010
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Silicene nanoribbon in electric field. (a) It is decomposed into the device, right lead and left lead parts. The width is taken to be W = 5. (b) Silicene consists of the A-sublattice and the B -sublattice with layer separation . The energy of the A sites (red disc) is lower than the one of the B sites (blue disc) in electric field . The edge mode is localized along the A sites (B sites) of the up (down) outmost edge of a nanoribbon. See Fig. 2 for the site-resolved DOS of the edge modes.

Image of FIG. 2.

Click to view

FIG. 2.

Band structure, DOS, and conductance of zigzag silicene nanoribbons for (a) the QSH insulator phase, (b) the metallic phase at the phase transition point, and (c) the trivial insulator phase. These phases are obtained by applying electric field Ez . The phase transition occurs at . The number of bands is 2 W + 2 in the nanoribbon with width W. Here, the width is taken to be W = 31, and only a part of bands are shown. The band gap is degenerated (nongenerated) with respect to the up (red) and down (blue) spins at ( ). Van Hove singularities emerge in the DOS at the points where the band dispersion is flat. The site-resolved DOS of the up-spin state at the outmost A and B sites of a nanoribbon are shown by red curves in the insets. There are finite DOS for the zero-energy edge states in the QSH insulator. The conductance is quantized by unit of .

Image of FIG. 3.

Click to view

FIG. 3.

(a) Phase diagram in the plane and (b) conductance as a function of Ez at fixed values of . It takes a constant in one phase, and changes its value across the phase boundary. The unit is for , and for the conductance.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Phase diagram in the plane and (b) conductance as a function of Ez at fixed values of . It takes a constant in one phase, and changes its value across the phase boundary. The unit is for , and for the conductance.

Image of FIG. 5.

Click to view

FIG. 5.

Band structures of the SQAH and QAH insulators. Up-spin (down-spin) states are illustrated in red (blue). There are two channels in the QAH insulator but only one channel in the SQAH insulator that contribute to the conductance at half-filling.

Loading

Article metrics loading...

/content/aip/journal/apl/102/17/10.1063/1.4803010
2013-04-29
2014-04-23

Abstract

Silicene is a quantum spin-Hall insulator, which undergoes a topological phase transition into other insulators by applying external fields. We investigate transport properties of silicene nanoribbons based on the Landauer formalism. We propose to determine topological phase transitions by measuring the density of states and conductance. The conductance is quantized and changes its value when the system transforms into different phases. We show that a silicene nanoribbon near the zero energy acts as a field-effect transistor. This transistor is robust since the zero-energy edge states are topologically protected. Our findings open a way to future topological quantum devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/17/1.4803010.html;jsessionid=gl8b2i8bdjte4.x-aip-live-02?itemId=/content/aip/journal/apl/102/17/10.1063/1.4803010&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Quantized conductance and field-effect topological quantum transistor in silicene nanoribbons
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/17/10.1063/1.4803010
10.1063/1.4803010
SEARCH_EXPAND_ITEM