1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Oblique metal gratings transparent for broadband terahertz waves
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/17/10.1063/1.4803467
1.
1. J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, Nano Lett. 8, 689 (2008).
http://dx.doi.org/10.1021/nl073296g
2.
2. D. S. Hecht, L. Hu, and G. Irvin, Adv. Mater. 23, 1482 (2011).
http://dx.doi.org/10.1002/adma.201003188
3.
3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998).
http://dx.doi.org/10.1038/35570
4.
4. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.2845
5.
5. Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and M. Wang, Phys. Rev. B 76, 195405 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.195405
6.
6. H. Liu and P. Lalanne, Nature (London) 452, 728 (2008).
http://dx.doi.org/10.1038/nature06762
7.
7. Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, Phys. Rev. Lett. 101, 087401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.087401
8.
8. J. T. Shen, P. B. Catrysse, and S. Fan, Phys. Rev. Lett. 94, 197401 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.197401
9.
9. I. R. Hooper, T. W. Preist, and J. R. Sambles, Phys. Rev. Lett. 97, 053902 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.053902
10.
10. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, Phys. Rev. Lett. 101, 047401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.047401
11.
11. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, Nat. Mater. 8, 758 (2009).
http://dx.doi.org/10.1038/nmat2495
12.
12. Z. Y. Song, Q. He, S. Y. Xiao, and L. Zhou, Appl. Phys. Lett. 101, 181110 (2012).
http://dx.doi.org/10.1063/1.4764945
13.
13. J. D. Edmunds, M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, Appl. Phys. Lett. 102, 011120 (2013).
http://dx.doi.org/10.1063/1.4773477
14.
14. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature (London) 424, 824 (2003).
http://dx.doi.org/10.1038/nature01937
15.
15. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
http://dx.doi.org/10.1126/science.1098999
16.
16. X. R. Huang, R. W. Peng, and R. H. Fan, Phys. Rev. Lett. 105, 243901 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.243901
17.
17. A. Alù, G. D'Aguanno, N. Mattiucci, and M. J. Bloemer, Phys. Rev. Lett. 106, 123902 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.123902
18.
18. R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, and X. Zhang, Adv. Mater. 24, 1980 (2012).
http://dx.doi.org/10.1002/adma.201104483
19.
19. N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D'Aguanno, M. A. Vincenti, M. Scalora, and M. J. Bloemer, Phys. Rev. B 85, 205430 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.205430
20.
20. G. Subramania, S. Foteinopoulou, and I. Brener, Phys. Rev. Lett. 107, 163902 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.163902
21.
21. P. Yeh, Opt. Commun. 26, 289 (1978).
http://dx.doi.org/10.1016/0030-4018(78)90203-1
22.
22. H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
http://dx.doi.org/10.1038/nmat2629
23.
23. K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, Appl. Phys. Lett. 80, 3003 (2002).
http://dx.doi.org/10.1063/1.1469679
24.
24. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, Semicond. Sci. Technol. 20, S266 (2005).
http://dx.doi.org/10.1088/0268-1242/20/7/018
25.
25. H. B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. C. Zhang, Proc. IEEE 95, 1514 (2007).
http://dx.doi.org/10.1109/JPROC.2007.898903
26.
26. N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, Appl. Phys. Lett. 88, 202905 (2006).
http://dx.doi.org/10.1063/1.2205727
27.
27. F. Miyamaru and M. Hangyo, Appl. Phys. Lett. 84, 2742 (2004).
http://dx.doi.org/10.1063/1.1702125
28.
28. E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, and M. Bonn, Phys. Rev. B 75, 235305 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.235305
29.
29. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, Phys. Rev. B 79, 085111 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.085111
30.
30. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, Norwood, 2005).
31.
31. H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, Appl. Phys. Lett. 77, 2789 (2000).
http://dx.doi.org/10.1063/1.1320852
32.
32. X. R. Huang and R. W. Peng, J. Opt. Soc. Am. A 27, 718 (2010).
http://dx.doi.org/10.1364/JOSAA.27.000718
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/17/10.1063/1.4803467
Loading
/content/aip/journal/apl/102/17/10.1063/1.4803467
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/17/10.1063/1.4803467
2013-04-30
2014-07-31

Abstract

In this work, we experimentally and theoretically demonstrate that oblique metal gratings with optimal tilt angles can become transparent for broadband terahertz waves under normal incidence. Direct imaging is applied to intuitively prove this broadband transparency phenomenon of structured metals. The transparency is insensitive to the grating thickness due to the non-resonance mechanism, and the optimal tilt angle is determined only by the strip width and the grating period. The oblique metal gratings with broadband transparence may have many potential applications, such as transparent conducting panels, white-beam polarizers, and stealth objects.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/17/1.4803467.html;jsessionid=5apibfp3b2c9i.x-aip-live-03?itemId=/content/aip/journal/apl/102/17/10.1063/1.4803467&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Oblique metal gratings transparent for broadband terahertz waves
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/17/10.1063/1.4803467
10.1063/1.4803467
SEARCH_EXPAND_ITEM