1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Oblique metal gratings transparent for broadband terahertz waves
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/17/10.1063/1.4803467
1.
1. J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, Nano Lett. 8, 689 (2008).
http://dx.doi.org/10.1021/nl073296g
2.
2. D. S. Hecht, L. Hu, and G. Irvin, Adv. Mater. 23, 1482 (2011).
http://dx.doi.org/10.1002/adma.201003188
3.
3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998).
http://dx.doi.org/10.1038/35570
4.
4. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.2845
5.
5. Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and M. Wang, Phys. Rev. B 76, 195405 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.195405
6.
6. H. Liu and P. Lalanne, Nature (London) 452, 728 (2008).
http://dx.doi.org/10.1038/nature06762
7.
7. Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, Phys. Rev. Lett. 101, 087401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.087401
8.
8. J. T. Shen, P. B. Catrysse, and S. Fan, Phys. Rev. Lett. 94, 197401 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.197401
9.
9. I. R. Hooper, T. W. Preist, and J. R. Sambles, Phys. Rev. Lett. 97, 053902 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.053902
10.
10. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, Phys. Rev. Lett. 101, 047401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.047401
11.
11. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, Nat. Mater. 8, 758 (2009).
http://dx.doi.org/10.1038/nmat2495
12.
12. Z. Y. Song, Q. He, S. Y. Xiao, and L. Zhou, Appl. Phys. Lett. 101, 181110 (2012).
http://dx.doi.org/10.1063/1.4764945
13.
13. J. D. Edmunds, M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, Appl. Phys. Lett. 102, 011120 (2013).
http://dx.doi.org/10.1063/1.4773477
14.
14. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature (London) 424, 824 (2003).
http://dx.doi.org/10.1038/nature01937
15.
15. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
http://dx.doi.org/10.1126/science.1098999
16.
16. X. R. Huang, R. W. Peng, and R. H. Fan, Phys. Rev. Lett. 105, 243901 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.243901
17.
17. A. Alù, G. D'Aguanno, N. Mattiucci, and M. J. Bloemer, Phys. Rev. Lett. 106, 123902 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.123902
18.
18. R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, and X. Zhang, Adv. Mater. 24, 1980 (2012).
http://dx.doi.org/10.1002/adma.201104483
19.
19. N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D'Aguanno, M. A. Vincenti, M. Scalora, and M. J. Bloemer, Phys. Rev. B 85, 205430 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.205430
20.
20. G. Subramania, S. Foteinopoulou, and I. Brener, Phys. Rev. Lett. 107, 163902 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.163902
21.
21. P. Yeh, Opt. Commun. 26, 289 (1978).
http://dx.doi.org/10.1016/0030-4018(78)90203-1
22.
22. H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
http://dx.doi.org/10.1038/nmat2629
23.
23. K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, Appl. Phys. Lett. 80, 3003 (2002).
http://dx.doi.org/10.1063/1.1469679
24.
24. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, Semicond. Sci. Technol. 20, S266 (2005).
http://dx.doi.org/10.1088/0268-1242/20/7/018
25.
25. H. B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. C. Zhang, Proc. IEEE 95, 1514 (2007).
http://dx.doi.org/10.1109/JPROC.2007.898903
26.
26. N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, Appl. Phys. Lett. 88, 202905 (2006).
http://dx.doi.org/10.1063/1.2205727
27.
27. F. Miyamaru and M. Hangyo, Appl. Phys. Lett. 84, 2742 (2004).
http://dx.doi.org/10.1063/1.1702125
28.
28. E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, and M. Bonn, Phys. Rev. B 75, 235305 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.235305
29.
29. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, Phys. Rev. B 79, 085111 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.085111
30.
30. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, Norwood, 2005).
31.
31. H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, Appl. Phys. Lett. 77, 2789 (2000).
http://dx.doi.org/10.1063/1.1320852
32.
32. X. R. Huang and R. W. Peng, J. Opt. Soc. Am. A 27, 718 (2010).
http://dx.doi.org/10.1364/JOSAA.27.000718
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/17/10.1063/1.4803467
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic of the oblique metal grating. (b) Dependence of the optimal tilt angle () on the duty cycle (/), which is calculated. (c) Calculated normal-incidence ( = 0°) transmission contour for oblique metal gratings with different tilt angles .  = 305 m,  = 200 m, and  = 1.95 mm. The white dashed line shows the optimal tilt angle determined by Eq. (1) . The color bar shows the transmission intensity. (d), (e) Calculated normal-incidence transmission spectra (red curves) for two oblique gratings ( = 36°) with the same parameters  = 305 m and  = 200 m but with different thicknesses: (d)  = 1.95 mm and (e)  = 1.20 mm, respectively. For comparison, the blue curves are the corresponding transmission patterns calculated with  = 0° (normal gratings with no tilts).

Image of FIG. 2.

Click to view

FIG. 2.

(a) Photograph of the normal steel grating without tilt ( = 0°). Insert shows the cross section. (b) Calculated and (c) measured transmission spectra of the sample in (a). (d) Photograph of the oblique steel grating with  = 36°. (e) Calculated and (f) measured transmission spectra of the sample in (d). Here the incident angle ranges from −72° to 72° with the sign only indicating the relative incidence direction. The white dashed lines correspond to the first-order Wood's anomalies. Color bar shows the transmission intensity.  = 305 m,  = 200 m, and  = 1.95 mm.

Image of FIG. 3.

Click to view

FIG. 3.

Calculated ||2 distributions of the normal steel grating with  = 0° (a) and the oblique grating with  = 36° (b) at frequency  = 0.37 THz; color bar shows the electric field intensity. Phase shifts of the transmitted waves as functions of the frequency for the normal grating (c) and the oblique grating (d) with respect to the free propagation wave.  = 305 m,  = 200 m, and  = 1.95 mm. Normal incidence.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Schematic of the THz imaging system. (b) Photograph of the objects for imaging. (c) Detected images with no grating before the objects,  = 0.64 THz. (d) Blank images with a 0.2 mm-thick copper plate placed at the “sample” position,  = 0.64 THz. (e)–(f) Images recorded with an oblique steel grating ( = 305 m,  = 200 m,  = 1.95 mm, and  = 36°) at the “sample” position for different frequencies: (e)  = 0.36 THz, (f)  = 0.64 THz, and (g)  = 0.72 THz. Color bar shows the transmission intensity.

Image of FIG. 5.

Click to view

FIG. 5.

Variation of the normal-incidence transmission spectra of oblique steel gratings with grating periods and other parameters. Calculations are based on a fixed tilt angle  = 36° and other variable parameters: (a)  = 305 m,  = 200 m, and  = 1 mm; (b)  = 152 m,  = 100 m, and  = 200 m; and (c)  = 76 m,  = 50 m, and  = 300 m.

Loading

Article metrics loading...

/content/aip/journal/apl/102/17/10.1063/1.4803467
2013-04-30
2014-04-23

Abstract

In this work, we experimentally and theoretically demonstrate that oblique metal gratings with optimal tilt angles can become transparent for broadband terahertz waves under normal incidence. Direct imaging is applied to intuitively prove this broadband transparency phenomenon of structured metals. The transparency is insensitive to the grating thickness due to the non-resonance mechanism, and the optimal tilt angle is determined only by the strip width and the grating period. The oblique metal gratings with broadband transparence may have many potential applications, such as transparent conducting panels, white-beam polarizers, and stealth objects.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/17/1.4803467.html;jsessionid=bhsbhd4ejso5l.x-aip-live-06?itemId=/content/aip/journal/apl/102/17/10.1063/1.4803467&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Oblique metal gratings transparent for broadband terahertz waves
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/17/10.1063/1.4803467
10.1063/1.4803467
SEARCH_EXPAND_ITEM