1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
In-situ monitoring of molecular vibrations of two organic semiconductors in photovoltaic blends and their impact on thin film morphology
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/17/10.1063/1.4803912
1.
1. G. Li, R. Zhu, and Y. Yang, Nature Photon. 6, 153 (2012).
http://dx.doi.org/10.1038/nphoton.2012.11
2.
2. S. Gunes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev. 107, 1324 (2007).
http://dx.doi.org/10.1021/cr050149z
3.
3. Z. He, C. M. Zhong, S. J. Su, M. Xu, H. B. Wu, and Y. Cao, Nature Photon. 6, 591 (2012).
http://dx.doi.org/10.1038/nphoton.2012.190
4.
4. C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S. W. Tsang, T. H. Lai, J. R. Reynolds, and F. So, Nature Photon. 6, 115 (2012).
http://dx.doi.org/10.1038/nphoton.2011.317
5.
5. L. T. Dou, J. B. You, J. Yang, C. C. Chen, Y. J. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, Nature Photon. 6, 180 (2012).
http://dx.doi.org/10.1038/nphoton.2011.356
6.
6. C. J. Brabec, M. Heeney, I. McCulloch, and J. Nelson, Chem. Soc. Rev. 40, 1185 (2011).
http://dx.doi.org/10.1039/c0cs00045k
7.
7. M. A. Ruderer and P. Muller-Buschbaum, Soft Matter 7, 5482 (2011).
http://dx.doi.org/10.1039/c0sm01502d
8.
8. W. C. Tsoi, D. T. James, J. S. Kim, P. G. Nicholson, C. E. Murphy, D. D. C. Bradley, J. Nelson, and J.-S. Kim, J. Am. Chem. Soc. 133, 9834 (2011).
http://dx.doi.org/10.1021/ja2013104
9.
9. X. Wang, D. Zhang, K. Braun, H. J. Egelhaaf, C. J. Brabec, and A. J. Meixner, Adv. Funct. Mater. 20, 492 (2010).
http://dx.doi.org/10.1002/adfm.200901930
10.
10. Y. Q. Gao, T. P. Martin, A. K. Thomas, and J. K. Grey, J. Phys. Chem. Lett. 1, 178 (2010).
http://dx.doi.org/10.1021/jz900038c
11.
11. E. Klimov, W. Li, X. Yang, G. G. Hoffmann, and J. Loos, Macromolecules 39, 4493 (2006).
http://dx.doi.org/10.1021/ma052590x
12.
12. Y. Q. Gao and J. K. Grey, J. Am. Chem. Soc. 131, 9654 (2009).
http://dx.doi.org/10.1021/ja900636z
13.
13. W. C. Tsoi, D. T. James, E. B. Domingo, J. S. Kim, M. Al-Hashimi, C. E. Murphy, N. Stingelin, M. Heeney, and J.-S. Kim, ACS Nano 6, 9646 (2012).
http://dx.doi.org/10.1021/nn304024g
14.
14. D. T. James, B. K. C. Kjellander, W. T. T. Smaal, G. H. Gelinck, C. Combe, I. McCulloch, R. Wilson, J. H. Burroughes, D. D. C. Bradley, and J.-S. Kim, ACS Nano 5, 9824 (2011).
http://dx.doi.org/10.1021/nn203397m
15.
15. J. M. Winfield, C. L. Donley, R. H. Friend, and J.-S. Kim, J. Appl. Phys. 107, 024902 (2010).
http://dx.doi.org/10.1063/1.3276257
16.
16. S. Miller, G. Fanchini, Y. Y. Lin, C. Li, C. W. Chen, W. F. Su, and M. Chhowalla, J. Mater. Chem. 18, 306 (2008).
http://dx.doi.org/10.1039/b713926h
17.
17. J. S. Kim, P. K. H. Ho, C. E. Murphy, A. J. A. B. Seeley, I. Grizzi, J. H. Burroughes, and R. H. Richard, Chem. Phys. Lett. 386, 2 (2004).
http://dx.doi.org/10.1016/j.cplett.2003.12.124
18.
18. H. Liem, P. Etchegoin, K. S. Whitehead, and D. D. C. Bradley, J. Appl. Phys. 92, 1154 (2002).
http://dx.doi.org/10.1063/1.1468251
19.
19. J. S. Kim, P. K. H. Ho, C. E. Murphy, N. Baynes, and R. H. Friend, Adv. Mater. 14, 206 (2002).
http://dx.doi.org/10.1002/1521-4095(20020205)14:3<206::AID-ADMA206>3.0.CO;2-J
20.
20. J. R. Ferraro and K. Nakamoto, Introductory Raman Spectroscopy (Academic Press, San Diego, CA, 1994).
21.
21. Y. Yacoby and E. Ehrenfreund, in Light Scattering in Solids VI, edited by M. Cardona and G. Gfintherodt (Springer, Berlin/Heidelberg, 1991), Vol. 68, p.73.
22.
22. Y. Y. Liang, Z. Xu, J. B. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater. 22, E135 (2010).
http://dx.doi.org/10.1002/adma.200903528
23.
23. H. Bronstein, Z. Y. Chen, R. S. Ashraf, W. M. Zhang, J. P. Du, J. R. Durrant, P. S. Tuladhar, K. Song, S. E. Watkins, Y. Geerts, M. M. Wienk, R. A. J. Janssen, T. Anthopoulos, H. Sirringhaus, M. Heeney, and I. McCulloch, J. Am. Chem. Soc. 133, 3272 (2011).
http://dx.doi.org/10.1021/ja110619k
24.
24. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson et al. Gaussian 09, revision A.02 (Gaussian, Inc., Wallingford, CT, 2009).
25.
25. N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 3rd ed. (Academic Press, Boston, 1990), p. 287.
26.
26. M. Sims, K. Zheng, M. Campoy-Quiles, R. Xia, P. N. Stavrinou, D. D. C. Bradley, and P. Etchegoin, J. Phys. Condens. Matter 17, 6307 (2005).
http://dx.doi.org/10.1088/0953-8984/17/41/002
27.
27. S. Cook. H. Ohkita, Y. Kim, J. J. Benson-Smith, D. D. C. Bradley, and J. R. Durrant, Chem. Phys. Lett. 445, 276 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.08.005
28.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/17/10.1063/1.4803912
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Chemical structure of DPPTTT and PC70BM (top left), (a) absorption spectra of DPPTTT, PC70BM and blend films before and after annealing (240 °C), in-situ Raman spectra of DPPTTT film during heating (b) and cooling (c) processes, and PC70BM film during heating (d) and cooling (e) processes. The Raman spectra are offset for clarity.

Image of FIG. 2.

Click to view

FIG. 2.

In-situ Raman spectra of blend film during the heating (a) and cooling (b) processes. The grey bands indicate Raman signals from PC70BM, Integrated intensities of Raman peaks at 1515 cm−1 and 1412 cm−1 during heating (c) and cooling (e) processes of DPPTTT: PC70BM and DPPTTT films, respectively. Integrated intensities of Raman peaks at 1567 cm−1 and 1468 cm−1 during heating (d) and cooling (f) processes of DPPTTT:PC70BM and PC70BM films, respectively. For Figures 2(c)–2(f) , the integrated Raman intensities are shown with respect to the values obtained at 22 °C before any thermal treatments.

Image of FIG. 3.

Click to view

FIG. 3.

(a) and (b) AFM topography images of DPPTTT:PC70BM blend film after thermal annealing at 140 °C and 170 °C, respectively. (c)–(e) In-situ optical micrographs of the DPPTTT:PC70BM film annealed at 190 °C, 210 °C, and 240 °C, respectively. (f) Raman spectra of annealed (240 °C) blend film taken at domain and homogenous regions.

Loading

Article metrics loading...

/content/aip/journal/apl/102/17/10.1063/1.4803912
2013-05-01
2014-04-25

Abstract

We report in-situ simultaneous monitoring of molecular vibrations of two components in organic photovoltaic blends using resonant Raman spectroscopy. Blend films were composed of a low bandgap copolymer thieno[3,2-b]thiophene-diketopyrrolopyrrole (DPPTTT) and (6,6)-phenyl-C71-butyric acid ester (PC 70BM). Changes in Raman spectra associated with crystallization processes of each component and their impact on thin film morphology were studied during thermal annealing and cooling processes. Transition temperatures to crystalline phases in blends were measured at ∼150 °C and ∼170 °C for DPPTTT and PC 70BM, respectively. Such phase changes lead to modifications in local chemical composition reducing relative Raman peak intensities (IPC70BM/IDPPTTT) from ∼0.4 in PC 70BM-rich domains to ∼0.15 in homogeneous areas.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/17/1.4803912.html;jsessionid=477ua7d0dobp2.x-aip-live-01?itemId=/content/aip/journal/apl/102/17/10.1063/1.4803912&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: In-situ monitoring of molecular vibrations of two organic semiconductors in photovoltaic blends and their impact on thin film morphology
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/17/10.1063/1.4803912
10.1063/1.4803912
SEARCH_EXPAND_ITEM