1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Band-like transport in high mobility unencapsulated single-layer MoS2 transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/17/10.1063/1.4803920
1.
1. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).
http://dx.doi.org/10.1038/nnano.2012.193
2.
2. H. S. S. R. Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, Angew. Chem. 122, 4153 (2010).
http://dx.doi.org/10.1002/ange.201000009
3.
3. W. Bao, X. Cai, D. Kim, K. Sridhara, and M. S. Fuhrer, Appl. Phys. Lett. 102, 042104 (2013).
http://dx.doi.org/10.1063/1.4789365
4.
4. N. Pradhan, D. Rhodes, Q. Zhang, S. Talapatra, M. Terrones, P. Ajayan, and L. Balicas, Appl. Phys. Lett. 102, 123105 (2013).
http://dx.doi.org/10.1063/1.4799172
5.
5. S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, and J.-Y. Choi, Nat. Commun. 3, 1011 (2012).
http://dx.doi.org/10.1038/ncomms2018
6.
6. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
7.
7. Y. Zhang, J. Ye, Y. Matsuhashi, and Y. Iwasa, Nano Lett. 12, 1136 (2012).
http://dx.doi.org/10.1021/nl2021575
8.
8. M.-W. Lin, L. Liu, Q. Lan, X. Tan, K. S. Dhindsa, P. Zeng, V. M. Naik, M. M.-C. Cheng, and Z. Zhou, J. Phys. D: Appl. Phys. 45, 345102 (2012).
http://dx.doi.org/10.1088/0022-3727/45/34/345102
9.
9. H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M. L. Chin, L.-J. Li, M. Dubey, J. Kong, and T. Palacios, Nano Lett. 12, 4674 (2012).
http://dx.doi.org/10.1021/nl302015v
10.
10. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.136805
11.
11. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).
http://dx.doi.org/10.1021/nl903868w
12.
12. H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Nat. Nanotechnol. 7, 490 (2012).
http://dx.doi.org/10.1038/nnano.2012.95
13.
13. K. F. Mak, K. He, J. Shan, and T. F. Heinz, Nat. Nanotechnol. 7, 494 (2012).
http://dx.doi.org/10.1038/nnano.2012.96
14.
14. T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, and B. Liu, Nat. Commun. 3, 887 (2012).
http://dx.doi.org/10.1038/ncomms1882
15.
15. K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Nat. Mater. 12, 207 (2012).
http://dx.doi.org/10.1038/nmat3505
16.
16. W. Choi, M. Y. Cho, A. Konar, J. H. Lee, G. B. Cha, S. C. Hong, S. Kim, J. Kim, D. Jena, and J. Joo, Adv. Mater. 24, 5832 (2012).
http://dx.doi.org/10.1002/adma.201201909
17.
17. H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, Nano Lett. 12, 3695 (2012).
http://dx.doi.org/10.1021/nl301485q
18.
18. S. Ghatak, A. N. Pal, and A. Ghosh, ACS Nano 5, 7707 (2011).
http://dx.doi.org/10.1021/nn202852j
19.
19. B. Radisavljevic and A. Kis, e-print arXiv:1301.4947v1.
20.
20. D. J. Late, B. Liu, H. S. S. R. Matte, V. P. Dravid, and C. N. R. Rao, ACS Nano 6, 5635 (2012).
http://dx.doi.org/10.1021/nn301572c
21.
21. K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, and A. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).
http://dx.doi.org/10.1073/pnas.0502848102
22.
22. H. Liu and P. D. Ye, IEEE Electron Device Lett. 33, 546 (2012).
http://dx.doi.org/10.1109/LED.2012.2184520
23.
23. R. Fivaz and E. Mooser, Phys. Rev. 163, 743 (1967).
http://dx.doi.org/10.1103/PhysRev.163.743
24.
24. A. J. Grant, T. M. Griffiths, G. D. Pitt, and A. D. Yoffe, J. Phys. C: Solid State Phys. 8, L17 (1975).
http://dx.doi.org/10.1088/0022-3719/8/1/004
25.
25. C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, ACS Nano 4, 2695 (2010).
http://dx.doi.org/10.1021/nn1003937
26.
26. D. J. Late, B. Liu, H. S. S. R. Matte, C. N. R. Rao, and V. P. Dravid, Adv. Funct. Mater. 22, 1894 (2012).
http://dx.doi.org/10.1002/adfm.201102913
27.
27. H. Liu, A. T. Neal, and P. D. Ye, ACS Nano 6, 8563 (2012).
http://dx.doi.org/10.1021/nn303513c
28.
28. B. Radisavljevic and A. Kis, Nat. Nanotechnol. 8, 147 (2013).
http://dx.doi.org/10.1038/nnano.2013.31
29.
29. H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, and X. Wang, Appl. Phys. Lett. 100, 123104 (2012).
http://dx.doi.org/10.1063/1.3696045
30.
30. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (OUP, Oxford, 2012).
31.
31. T. Tansley and C. Foley, Electron. Lett. 20, 1066 (1984).
http://dx.doi.org/10.1049/el:19840729
32.
32. H. Ehrenreich, J. Phys. Chem. Solids 12, 97 (1959).
http://dx.doi.org/10.1016/0022-3697(59)90255-0
33.
33. N. D. Arora, J. R. Hauser, and D. J. Roulston, IEEE Trans. Electron Devices 29, 292 (1982).
http://dx.doi.org/10.1109/T-ED.1982.20698
34.
34. H. Steinberg, D. R. Gardner, Y. S. Lee, and P. Jarillo-Herrero, Nano Lett. 10, 5032 (2010).
http://dx.doi.org/10.1021/nl1032183
35.
35. J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Nat. Nanotechnol. 3, 206 (2008).
http://dx.doi.org/10.1038/nnano.2008.58
36.
36. T. Sakanoue and H. Sirringhaus, Nature Mater. 9, 736 (2010).
http://dx.doi.org/10.1038/nmat2825
37.
37. E. Arnold, Appl. Phys. Lett. 25, 705 (1974).
http://dx.doi.org/10.1063/1.1655369
38.
38. A. Hartstein and A. B. Fowler, J. Phys. C: Solid State Phys. 8, L249 (1975).
http://dx.doi.org/10.1088/0022-3719/8/11/007
39.
39. K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, Phys. Rev. B 85, 115317 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.115317
40.
40. S. Larentis, B. Fallahazad, and E. Tutuc, Appl. Phys. Lett. 101, 223104 (2012).
http://dx.doi.org/10.1063/1.4768218
41.
41. F. J. Morin, Phys. Rev. 93, 62 (1954).
http://dx.doi.org/10.1103/PhysRev.93.62
42.
42. M. Glicksman, Phys. Rev. 111, 125 (1958).
http://dx.doi.org/10.1103/PhysRev.111.125
43.
43. D. Long and J. Myers, Phys. Rev. 115, 1107 (1959).
http://dx.doi.org/10.1103/PhysRev.115.1107
44.
44. E. J. Moore, Phys. Rev. 160, 618 (1967).
http://dx.doi.org/10.1103/PhysRev.160.618
45.
45. C. Dean, A. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. Shepard, and J. Hone, Nat. Nanotechnol. 5, 722 (2010).
http://dx.doi.org/10.1038/nnano.2010.172
46.
46.See supplementary material at http://dx.doi.org/10.1063/1.4803920 for details on fabrication, Raman characterization, and additional data analysis. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/17/10.1063/1.4803920
Loading
/content/aip/journal/apl/102/17/10.1063/1.4803920
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/17/10.1063/1.4803920
2013-05-01
2015-02-01

Abstract

Ultra-thin MoS2 has recently emerged as a promising two-dimensional semiconductor for electronic and optoelectronic applications. Here, we report high mobility (>60 cm2/Vs at room temperature) field-effect transistors that employ unencapsulated single-layer MoS2 on oxidized Si wafers with a low level of extrinsic contamination. While charge transport in the sub-threshold regime is consistent with a variable range hopping model, monotonically decreasing field-effect mobility with increasing temperature suggests band-like transport in the linear regime. At temperatures below 100 K, temperature-independent mobility is limited by Coulomb scattering, whereas, at temperatures above 100 K, phonon-limited mobility decreases as a power law with increasing temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/17/1.4803920.html;jsessionid=5hiui94mht3r.x-aip-live-06?itemId=/content/aip/journal/apl/102/17/10.1063/1.4803920&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Band-like transport in high mobility unencapsulated single-layer MoS2 transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/17/10.1063/1.4803920
10.1063/1.4803920
SEARCH_EXPAND_ITEM