1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Highly efficient inverted polymer solar cells with reduced graphene-oxide-zinc-oxide nanocomposites buffer layer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/19/10.1063/1.4804645
1.
1. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudi, Science 258, 1474 (1992).
http://dx.doi.org/10.1126/science.258.5087.1474
2.
2. Y. He, J. You, L. Dou, C.-C. Chen, E. Richard, K. C. Cha, Y. Wu, G. Li, and Y. Yang, Chem. Commun. 48, 7616 (2012).
http://dx.doi.org/10.1039/c2cc33282e
3.
3. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, Nature Mater. 6, 497 (2007).
http://dx.doi.org/10.1038/nmat1928
4.
4.Press release by Heliatek, “Heliatek consolidates its technology leadership by establishing a new world record for organic solar technology with a cell efficiency of 12%,” January 16, 2013.
5.
5. M. P. de Jong, L. J. van Ijzendoorn, and M. J. A. de Voigt, Appl. Phys. Lett. 77, 2255 (2000).
http://dx.doi.org/10.1063/1.1315344
6.
6. K. Norrman, S. A. Gevorgyan, and F. C. Krebs, ACS Appl. Mater. Interfaces 1, 102 (2009).
http://dx.doi.org/10.1021/am800039w
7.
7. M. T. Lloyd, D. C. Olson, P. Lu, E. Fang, D. L. Moore, M. S. White, M. O. Reese, D. S. Ginley, and J. W. P. Hsu, J. Mater. Chem. 19, 7638 (2009).
http://dx.doi.org/10.1039/b910213b
8.
8. M. Andersen, J. E. Carle, N. Cruys-Bagger, M. R. Lilliedal, M. A. Hammond, B. Winther-Jensn, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 91, 539 (2007).
http://dx.doi.org/10.1016/j.solmat.2006.11.006
9.
9. Z. Liang, Q. Zhang, O. Wiranwetchayan, J. Xi, Z. Yang, K. Park, C. Li, and G. Cao, Adv. Funct. Mater. 22, 2194 (2012).
http://dx.doi.org/10.1002/adfm.201101915
10.
10. Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, Adv. Mater. 23, 1679 (2011).
http://dx.doi.org/10.1002/adma.201004301
11.
11. M. D. McGehee and C. Goh, AIP Conf. Proc. 1044, 322 (2008).
http://dx.doi.org/10.1063/1.2993730
12.
12. J. T. Shieh, C. H. Liu, H. F. Meng, S. R. Tseng, Y. C. Chao, and S. F. Horng, J. Appl. Phys. 107, 084503 (2010).
http://dx.doi.org/10.1063/1.3327210
13.
13. A. K. K. Kyaw, X. W. Sun, D. W. Zhao, S. T. Tan, Y. Divayana, and H. V. Demir, IEEE J. Sel. Top. Quantum Electron. 16, 1700 (2010).
http://dx.doi.org/10.1109/JSTQE.2009.2039200
14.
14. J. Huang, Z. Yinb, and Q. Zheng, Energy Environ. Sci. 4, 3861 (2011).
http://dx.doi.org/10.1039/c1ee01873f
15.
15. Y. H. Ng, I. V. Lightcap, K. Goodwin, M. Matsumura, and P. V. Kamat, J. Phys. Chem. Lett. 1, 2222 (2010).
http://dx.doi.org/10.1021/jz100728z
16.
16. T. Chen, W. Hu, J. Song, G. H. Guai, and C. M. Li, Adv. Funct. Mater. 22, 5245 (2012).
http://dx.doi.org/10.1002/adfm.201201126
17.
17. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).
http://dx.doi.org/10.1021/ja01539a017
18.
18. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon 45, 1558 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.02.034
19.
19. J. Y. Oh, T. I. Lee, J. M. Myoung, U. Jeong, and H. K. Baik, Macromol. Rapid Commun. 32, 1066 (2011).
http://dx.doi.org/10.1002/marc.201100132
20.
20. J. Y. Oh, M. Shin, T. I. Lee, W. S. Jang, Y. Min, J. M. Myoung, H. K. Baik, and U. Jeong, Macromolecules 45, 7504 (2012).
http://dx.doi.org/10.1021/ma300958n
21.
21. J. Y. Oh, M. Shin, T. I. Lee, W. S. Jang, Y. J. Lee, C. S. Kim, J. W. Kang, J. M. Myoung, H. K. Baik, and U. Jeong, “Highly Bendable Large-Area Printed Bulk Heterojunction Film Prepared by the Self-Seeded Growth of Poly(3-hexylthiophene) Nanofibrils,” Macromolecules (published online).
http://dx.doi.org/10.1021/ma4003165
22.
22. T. Kuwabara, C. Iwata, T. Yamaguchi, and K. Takahashi, ACS Appl. Mater. Interfaces 2, 2254 (2010).
http://dx.doi.org/10.1021/am100312v
23.
23. B. Conings, L. Baeten, H. G. Boyen, D. Spoltore, J. D'Haen, L. Grieten, P. Wagner, M. K. V. Bael, and J. V. Manca, J. Phys. Chem. C 115, 16695 (2011).
http://dx.doi.org/10.1021/jp203699h
24.
24. J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, Appl. Phys. Lett. 91, 113520 (2007).
http://dx.doi.org/10.1063/1.2784961
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/19/10.1063/1.4804645
Loading
/content/aip/journal/apl/102/19/10.1063/1.4804645
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/19/10.1063/1.4804645
2013-05-13
2014-07-23

Abstract

In this study, we reported a 36% improvement in the performance of inverted solar cells as a result of increased short-circuit current (J) obtained using a composition of zinc oxide (ZnO) and reduced graphene oxide (RGO) as an n-type buffer layer. RGO-ZnO nanocomposites show higher electron conductivity than intrinsic ZnO; moreover, they show reduced contact resistance at the interface between the active layer and n-type buffer layer. These factors prevent carrier loss resulting from defects and recombinations in the device, thereby significantly increasing the J value for the device. Thus, an efficiency of 4.15% was achieved for inverted solar cells with a controlled RGO-ZnO nanocomposites layer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/19/1.4804645.html;jsessionid=1czsjukcrbxh1.x-aip-live-06?itemId=/content/aip/journal/apl/102/19/10.1063/1.4804645&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Highly efficient inverted polymer solar cells with reduced graphene-oxide-zinc-oxide nanocomposites buffer layer
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/19/10.1063/1.4804645
10.1063/1.4804645
SEARCH_EXPAND_ITEM