1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Pyroelectric electron emission from nanometer-thick films of PbZrxTi1−xO3
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/19/10.1063/1.4806973
1.
1. B. Rosenblum, P. Bräunlich, and J. P. Carrico, Appl. Phys. Let. 25, 17 (1974).
http://dx.doi.org/10.1063/1.1655260
2.
2. J. D. Brownridge, Nature 358, 287 (1992).
http://dx.doi.org/10.1038/358287b0
3.
3. G. Rosenman, D. Shur, Y. E. Krasik, and A. Dunaevsky, J. Appl. Phys. 88, 6109 (2000).
http://dx.doi.org/10.1063/1.1319378
4.
4. D. W. Kim, E. M. Bourim, S. H. Jeong, and I. K. Yoo, Physica B 352, 200 (2004).
http://dx.doi.org/10.1016/j.physb.2004.07.011
5.
5. J. F. Scott, Science 315, 954 (2007).
http://dx.doi.org/10.1126/science.1129564
6.
6. G. Rosenman, Ferroelectrics 133, 235 (1992).
http://dx.doi.org/10.1080/00150199208218005
7.
7. D. Shur and G. Rosenman, J. Appl. Phys. 80, 3445 (1996).
http://dx.doi.org/10.1063/1.363213
8.
8. J. D. Brownridge and S. M. Shafroth, Appl. Phys. Lett. 79, 3364 (2001).
http://dx.doi.org/10.1063/1.1418458
9.
9. E. Bourim, D. W. Kim, V. S. Kin, C. W. Moon, and I. K. Yoo, J. Electroceram. 13, 293 (2004).
http://dx.doi.org/10.1007/s10832-004-5115-x
10.
10. M. Klopfer, T. Wolowiec, V. Satchouk, Y. Alivov, and S. Molloi, Nucl. Instrum. Methods Phys. Res. A 689, 47 (2012).
http://dx.doi.org/10.1016/j.nima.2012.05.065
11.
11. G. Rosenman and I. Rez, J. Appl. Phys. 73, 1904 (1993).
http://dx.doi.org/10.1063/1.354059
12.
12. R. G. Forbes, C. J. Edgcombe, and U. Valdre, Ultramicroscopy 95, 57 (2003).
http://dx.doi.org/10.1016/S0304-3991(02)00297-8
13.
13. E. G. Pogorelov, Y.-C. Chang, A. I. Zhbanov, and Y.-G. Lee, J. Appl. Phys. 108, 044502 (2010).
http://dx.doi.org/10.1063/1.3466992
14.
14. H. Mizota, Y. Nakanishi, H. Oohashi, Y. Ito, T. Tochio, S. Yoshikado, and T. Tanaka, Radiat. Phys. Chem. 75, 1626 (2006).
http://dx.doi.org/10.1016/j.radphyschem.2005.07.056
15.
15. R. B. Marcus, T. S. Ravi, T. Gmitter, K. Chin, D. Liu, W. J. Orvis, D. R. Ciarlo, C. E. Hunt, and J. Trujillo, Appl. Phys. Lett. 56, 236 (1990).
http://dx.doi.org/10.1063/1.102841
16.
16. P. C. Fletcher, V. K. R. Mangalam, L. W. Martin, and W. P. King, J. Vac. Sci. Technol. B 31, 021805 (2013).
http://dx.doi.org/10.1116/1.4793219
17.
17. J. Karthik, J. C. Agar, A. R. Damodaran, and L. W. Martin, Phys. Rev. Lett. 109, 257602 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.257602
18.
18. B. Bhatia, J. Karthik, T. Tong, D. G. Cahill, L. W. Martin, and W. P. King, J. Appl. Phys. 112, 104106 (2012).
http://dx.doi.org/10.1063/1.4766271
19.
19.See supplementary material at http://dx.doi.org/10.1063/1.4806973 for I-V measurements at elevated steady state temperatures, Fowler-Nordheim plots of field emission from PZT films, and an estimate of the field enhancement factor from experiment. [Supplementary Material]
20.
20. R. V. Mangalam, J. Karthik, A. R. Damodaran, J. C. Agar, and L. W. Martin, Adv. Mater. 25, 1761 (2013).
http://dx.doi.org/10.1002/adma.201204240
21.
21. C. J. Edgcombe and U. Valdrè, Solid-State Electron. 45, 857 (2001).
http://dx.doi.org/10.1016/S0038-1101(00)00212-4
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/19/10.1063/1.4806973
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Experimental setup for pyroelectric electron emission. Tip emitter samples were tested in a vacuum chamber at 10−10 Torr. The samples were secured to an alumina plate using silver paint and separated from the anode using Kapton tape of 150 m thick. A ceramic heater heated the samples from the bottom while the anode generated a macroscopic electric field using a positive voltage bias. (Inset) A SEM micrograph of a microfabricated tip emitter array coated with a 30 nm thick epitaxial pyroelectric film. The tips have a mean tip radius of 30 nm.

Image of FIG. 2.

Click to view

FIG. 2.

Pyroelectric emission from PbZrTiO with varying electric field strengths. Phase lag between the onset of heating and pyroelectric emission is caused by the thermal separation between the heater and pyro-emitters. (Bottom) The sample was actively heated at 100 °C/min but passively cooled for two cycles.

Image of FIG. 3.

Click to view

FIG. 3.

Pyroelectric emission from PbZrTiO with varying electric field strengths. The noise is surface flashover events and discharge from the anode to the pyroemitters. (Bottom) The sample was actively heated at 100 °C/min but passively cooled for two cycles.

Image of FIG. 4.

Click to view

FIG. 4.

Pyroelectric emission from (top) PbZrTiO and (center) PbZrTiO with (bottom) varying heating rates. The emission current was offset to be zero at = 120 s. The background electric field strength was 20 V/m for all cases. Pyroelectric emission, signified by a deviation of the current from zero after the onset of heating, occurs at heating rates greater than 50 °C/min for this electric field strength.

Tables

Generic image for table

Click to view

Table I.

Emitted charge calculated by integrating current in Figs. 3 and 4 .

Loading

Article metrics loading...

/content/aip/journal/apl/102/19/10.1063/1.4806973
2013-05-13
2014-04-19

Abstract

We report pyroelectric emission from PbZrTiO (PZT) thin films on nanometer-sharp tips. The epitaxial PZT films are 30 nm thick and grown directly on single-crystal silicon tips. Pyroelectric emission occurs for heating rates of ≥50 °C/min in a 20 V/m external field. The emission current is a maximum of 240 nA when the heating rate is 100 °C/min and the electric field strength is ≥6.7 V/m. The emitted charge is ∼7% of that expected for a perfect thin film emitter of epitaxial PbZrTiO. We calculate that pyroelectric emission can occur without an applied field if the heating rate exceeds 4.0 × 10 °C/min.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/19/1.4806973.html;jsessionid=c699n1iun0u.x-aip-live-01?itemId=/content/aip/journal/apl/102/19/10.1063/1.4806973&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Pyroelectric electron emission from nanometer-thick films of PbZrxTi1−xO3
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/19/10.1063/1.4806973
10.1063/1.4806973
SEARCH_EXPAND_ITEM