1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Spin torque transistor revisited
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/19/10.1063/1.4806982
1.
1. S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
http://dx.doi.org/10.1063/1.102730
2.
2. K. Konishi, T. Nozaki, H. Kubota, A. Fukushima, S. Yuasa, and Y. Suzuki, IEEE Trans. Magn. 48, 1134 (2012).
http://dx.doi.org/10.1109/TMAG.2011.2170085
3.
3. G. E. W. Bauer, A. Brataas, Y. Tserkovnyak, and B. J. van Wees, Appl. Phys. Lett. 82, 3928 (2003).
http://dx.doi.org/10.1063/1.1579122
4.
4. K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, Nature Mater. 9, 894 (2010).
http://dx.doi.org/10.1038/nmat2856
5.
5. Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, and E. Saitoh, Nature (London) 464, 262 (2010).
http://dx.doi.org/10.1038/nature08876
6.
6. A. Brataas, Yu. V. Nazarov, and G. E. W. Bauer, Phys. Rev. Lett. 84, 2481 (2000);
http://dx.doi.org/10.1103/PhysRevLett.84.2481
6. A. Brataas, Yu. V. Nazarov, and G. E. W. Bauer, Eur. Phys. J. B 22, 99 (2001).
http://dx.doi.org/10.1007/PL00011139
7.
7. X. Jia, K. Liu, K. Xia, and G. E. W. Bauer, Europhys. Lett. 96, 17005 (2011).
http://dx.doi.org/10.1209/0295-5075/96/17005
8.
8. C. Burrowes, B. Heinrich, B. Kardasz, E. A. Montoya, E. Girt, Y. Sun, Y. Y. Song, and M. Wu, Appl. Phys. Lett. 100, 092403 (2012).
http://dx.doi.org/10.1063/1.3690918
9.
9. L. Liu, C.-F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Science 336, 555 (2012).
http://dx.doi.org/10.1126/science.1218197
10.
10. C.-F. Pai, L. Liu, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Appl. Phys. Lett. 101, 122404 (2012).
http://dx.doi.org/10.1063/1.4753947
11.
11. Y. Niimi, Y. Kawanishi, D. H. Wei, C. Deranlot, H. X. Yang, M. Chshiev, T. Valet, A. Fert, and Y. Otani, Phys. Rev. Lett. 109, 156602 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.156602
12.
12. K. Xia, P. J. Kelly, G. E. W. Bauer, A. Brataas, and I. Turek, Phys. Rev. B 65, 220401 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.220401
13.
13. M. D. Stiles and A. Zangwill, Phys. Rev. B 66, 14407 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.014407
14.
14. F. J. Jedema, H. B. Heersche, A. T. Filip, J. J. A. Baselmans, and B. J. van Wees, Nature (London) 416, 713 (2002);
http://dx.doi.org/10.1038/416713a
14. S. O. Valenzuela and M. Tinkham, ibid. 442, 176 (2006).
http://dx.doi.org/10.1038/nature04937
15.
15. F. J. Jedema, A. T. Filip, and B. J. van Wees, Nature (London) 410, 345 (2001).
http://dx.doi.org/10.1038/35066533
16.
16. T. Kimura and Y. Otani, Phys. Rev. Lett. 99, 196604 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.196604
17.
17. M. Wojtaszek, I. J. Vera-Marun, T. Maassen, and B. J. van Wees, Phys. Rev. B 87, 081402R (2013).
http://dx.doi.org/10.1103/PhysRevB.87.081402
18.
18. G. E. W. Bauer, Y. Tserkovnyak, D. Huertas, and A. Brataas, Phys. Rev. B 67, 094421 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.094421
19.
19. A. Brataas, Y. V. Nazarov, J. Inoue, and G. E. W. Bauer, Phys. Rev. B 59, 93 (1999);
http://dx.doi.org/10.1103/PhysRevB.59.93
19. A. Brataas, Y. V. Nazarov, J. Inoue, and G. E. W. Bauer, Eur. Phys. J. B 9, 421 (1999).
http://dx.doi.org/10.1007/s100510050784
20.
20. F. J. Jedema, M. S. Nijboer, A. T. Filip, and B. J. van Wees, Phys. Rev. B 67, 085319 (2003);
http://dx.doi.org/10.1103/PhysRevB.67.085319
20. J. Bass and W. P. Pratt. J. Phys.: Condens. Matter 19, 183201 (2007).
http://dx.doi.org/10.1088/0953-8984/19/18/183201
21.
21. W. Han and R. K. Kawakami, Phys. Rev. Lett. 107, 047207 (2011);
http://dx.doi.org/10.1103/PhysRevLett.107.047207
21. M. H. D. Guimarães, A. Veligura, P. J. Zomer, T. Maassen, I. J. Vera-Marun, N. Tombros, and B. J. van Wees, Nano Lett. 12, 3512 (2012).
http://dx.doi.org/10.1021/nl301050a
22.
22. M. I. Dyakonov and V. I. Perel, Phys. Lett. A 35, 459 (1971);
http://dx.doi.org/10.1016/0375-9601(71)90196-4
22. J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999);
http://dx.doi.org/10.1103/PhysRevLett.83.1834
22. S. F. Zhang, Phys. Rev. Lett. 85, 393 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.393
23.
23. T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, Phys. Rev. Lett. 98, 156601 (2007);
http://dx.doi.org/10.1103/PhysRevLett.98.156601
23. K. Ando, S. Takahashi, K. Harii, K. Sasage, J. Ieda, S. Maekawa, and E. Saitoh, Phys. Rev. Lett. 101, 036601 (2008);
http://dx.doi.org/10.1103/PhysRevLett.101.036601
23. O. Mosendz, J. E. Pearson, F. Y. Fradin, G. E. W. Bauer, S. D. Bader, and A. Hoffmann, Phys. Rev. Lett. 104, 046601 (2010);
http://dx.doi.org/10.1103/PhysRevLett.104.046601
23. L. Q. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. 106, 036601 (2011);
http://dx.doi.org/10.1103/PhysRevLett.106.036601
23. L. Q. Liu, R. A. Buhrman, and D. C. Ralph, e-print arXiv:1111.3702.
24.
24. H. Nakayama, M. Althammer, Y.-T. Chen, K. Uchida, Y. Kajiwara, D. Kikuchi, T. Ohtani, S. Geprägs, M. Opel, S. Takahashi, R. Gross, G. E. W. Bauer, S. T. B. Goennenwein, and E. Saitoh, Phys. Rev. Lett. 110, 206601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.206601
25.
25. Y. Chen, S. Takahashi, H. Nakayama, M. Althammer, S. T. B. Goennenwein, E. Saitoh, and G. E. W. Bauer, Phys. Rev. B 87, 144411 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.144411
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/19/10.1063/1.4806982
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematics of the spin torque transistor. The contacts are ferromagnets in a flux closure configuration. The circular disk is made form a magnetic insulator with easy plane magnetization, while the rectangles represent normal metal thin films. θ is the angle between base magnetization and -axis.

Image of FIG. 2.

Click to view

FIG. 2.

Differential current gain as a function of the voltage ratio for different values of . (a) , (b) . Insets represent the divergent gain for the critical .

Image of FIG. 3.

Click to view

FIG. 3.

Spin accumulation in N1 for as a function of the interface resistance for a node length of .

Image of FIG. 4.

Click to view

FIG. 4.

Differential current gain in the spin (Hall) transistor as a function of the voltage ratio for different values of and ( ). (a) , (b) . Insets represent the divergent gain for the critical .

Loading

Article metrics loading...

/content/aip/journal/apl/102/19/10.1063/1.4806982
2013-05-13
2014-04-23

Abstract

We theoretically study the operation of a 4-terminal device consisting of two lateral thin-film spin valves that are coupled by a magnetic insulator such as yttrium iron garnet via the spin transfer torque. By magnetoelectronic circuit theory we calculate the current voltage characteristics and find negative differential resistance and differential gain in a large region of parameter space. We demonstrate that functionality is preserved when the control spin valve is replaced by a normal metal film with a large spin Hall angle.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/19/1.4806982.html;jsessionid=1nkx97ihm7tfo.x-aip-live-06?itemId=/content/aip/journal/apl/102/19/10.1063/1.4806982&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Spin torque transistor revisited
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/19/10.1063/1.4806982
10.1063/1.4806982
SEARCH_EXPAND_ITEM