1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Solitonic Dirac fermion wave guide networks on topological insulator surfaces
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/19/10.1063/1.4807012
1.
1. R. Hammer and W. Pötz, “Staggered-grid leap-frog scheme for the (2 + 1)D Dirac equation,” Comput. Phys. Commun. (submitted).
2.
2. X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.1057
3.
3. J. E. Moore and L. Balents, Phys. Rev. B 75, 121306 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.121306
4.
4. X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B 78, 195424 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.195424
5.
5. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009).
http://dx.doi.org/10.1038/nphys1274
6.
6. W. Y. Shan, H. Z. Lu, and S. Q. Shen, New J. Phys. 12, 043048 (2010).
http://dx.doi.org/10.1088/1367-2630/12/4/043048
7.
7. Y. L. Chen, J. H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H. H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu et al., Science 329, 659 (2010).
http://dx.doi.org/10.1126/science.1189924
8.
8. Q. Liu, C. X. Liu, C. Xu, X. L. Qi, and S. C. Zhang, Phys. Rev. Lett. 102, 156603 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.156603
9.
9. W. Luo and X. L. Qi, Phys. Rev. B 87, 085431 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.085431
10.
10. J. G. Analytis, J. H. Chu, Y. Chen, F. Corredor, R. D. McDonald, Z. X. Shen, and I. R. Fisher, Phys. Rev. B 81, 205407 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.205407
11.
11. H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, Nature Mater. 9, 225 (2010).
http://dx.doi.org/10.1038/nmat2609
12.
12. C. Wickles and W. Belzig, Phys. Rev. B 86, 035151 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.035151
13.
13. L. D. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935).
14.
14. H. How, R. C. O'Handley, and F. R. Morgenthaler, Phys. Rev. B 40, 4808 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.4808
15.
15. I. Garate and M. Franz, Phys. Rev. Lett. 104, 146802 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.146802
16.
16.See, for example, M. Wenin, A. Windisch, and W. Pötz, J. Appl. Phys. 108, 103717 (2010).
http://dx.doi.org/10.1063/1.3514070
17.
17. G. Bowtell and A. E. G. Stuart, Phys. Rev. D 15, 3580 (1977).
http://dx.doi.org/10.1103/PhysRevD.15.3580
18.
18. S. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zarkharov, Theory of Solitons (Consultants Bureau, New York, 1984).
19.
19. Z. Wu, F. M. Peeters, and K. Chang, Appl. Phys. Lett. 98, 162101 (2011).
http://dx.doi.org/10.1063/1.3581887
20.
20. T. Hanaguri, K. Igarashi, M. Kawamura, H. Takagi, and T. Sasagawa, Phys. Rev. B 82, 081305 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.081305
21.
21. A. Van Esch, L. Van Bockstal, J. De Boeck, G. Verbanck, A. S. van Steenbergen, P. J. Wellmann, B. Grietens, R. Bogaerts, F. Herlach, and G. Borghs, Phys. Rev. B 56, 13103 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.13103
22.
22. R. Hammer, C. Ertler, and W. Pötz, e-print arXiv:1205.6941.
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/19/10.1063/1.4807012
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Mass DW on the 2D surface of a 3D TI: For and , a CDWS localized in -direction forms.

Image of FIG. 2.

Click to view

FIG. 2.

Coherent Dirac fermion interferometer on a TI surface: Chiral channel states form at the domain boundaries between magnetization regions of opposite direction ). There are two allowed paths through the structure (wavy lines). When a gate voltage is applied, the paths pick up an additional phase leading to destructive or constructive interference depending on its magnitude and the device can be switched from transmission to the left (drain 1) to transmission to the right (drain 2).

Image of FIG. 3.

Click to view

FIG. 3.

Magnetic Néel wall texture of the insulating ferromagnet on the surface of the topological insulator. The contour plot shows the z-component of the magnetization . The asymptotic values are represented by black and by white color. The vector plot shows . The dotted and crossed circles represent the magnetization direction of the thick hard ferromagnets pinning the thin insulating ferromagnetic layer.

Image of FIG. 4.

Click to view

FIG. 4.

Wave propagation in the interferometer with Bloch walls for (a) phase difference and (b) phase difference . The wave packet is shown for increasing time as it propagates along the DW channels. The color (or brightness variation) encodes the probability density .

Image of FIG. 5.

Click to view

FIG. 5.

Transmission of the coherent fermion interferometer (to drain 2) as a function of the gate voltage. The solid line represents the analytic expression, and the markers are results of the simulation.

Loading

Article metrics loading...

/content/aip/journal/apl/102/19/10.1063/1.4807012
2013-05-13
2014-04-19

Abstract

Magnetic texturing on the surface of a topological insulator allows the design of wave guide networks and beam splitters for domain-wall Dirac fermions. Guided by simple analytic arguments, we model a Dirac domain-wall fermion interferometer consisting of two parallel pathways imprinted by solitonic ferromagnetic texturing. A specially developed staggered-grid leap-frog discretization scheme in 2 + 1 dimensions with absorbing boundary conditions is employed to study the interferometer in an open device geometry. Its net transmission can be tuned from constructive to destructive interference, either by variation of the magnetization texture (effective path length) or an applied gate bias (wavelength). Possible ways to observe and utilize this effect are discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/19/1.4807012.html;jsessionid=1q9as8hv5fna7.x-aip-live-06?itemId=/content/aip/journal/apl/102/19/10.1063/1.4807012&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Solitonic Dirac fermion wave guide networks on topological insulator surfaces
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/19/10.1063/1.4807012
10.1063/1.4807012
SEARCH_EXPAND_ITEM