1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Solitonic Dirac fermion wave guide networks on topological insulator surfaces
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/19/10.1063/1.4807012
1.
1. R. Hammer and W. Pötz, “Staggered-grid leap-frog scheme for the (2 + 1)D Dirac equation,” Comput. Phys. Commun. (submitted).
2.
2. X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.1057
3.
3. J. E. Moore and L. Balents, Phys. Rev. B 75, 121306 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.121306
4.
4. X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B 78, 195424 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.195424
5.
5. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009).
http://dx.doi.org/10.1038/nphys1274
6.
6. W. Y. Shan, H. Z. Lu, and S. Q. Shen, New J. Phys. 12, 043048 (2010).
http://dx.doi.org/10.1088/1367-2630/12/4/043048
7.
7. Y. L. Chen, J. H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H. H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu et al., Science 329, 659 (2010).
http://dx.doi.org/10.1126/science.1189924
8.
8. Q. Liu, C. X. Liu, C. Xu, X. L. Qi, and S. C. Zhang, Phys. Rev. Lett. 102, 156603 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.156603
9.
9. W. Luo and X. L. Qi, Phys. Rev. B 87, 085431 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.085431
10.
10. J. G. Analytis, J. H. Chu, Y. Chen, F. Corredor, R. D. McDonald, Z. X. Shen, and I. R. Fisher, Phys. Rev. B 81, 205407 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.205407
11.
11. H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, Nature Mater. 9, 225 (2010).
http://dx.doi.org/10.1038/nmat2609
12.
12. C. Wickles and W. Belzig, Phys. Rev. B 86, 035151 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.035151
13.
13. L. D. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935).
14.
14. H. How, R. C. O'Handley, and F. R. Morgenthaler, Phys. Rev. B 40, 4808 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.4808
15.
15. I. Garate and M. Franz, Phys. Rev. Lett. 104, 146802 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.146802
16.
16.See, for example, M. Wenin, A. Windisch, and W. Pötz, J. Appl. Phys. 108, 103717 (2010).
http://dx.doi.org/10.1063/1.3514070
17.
17. G. Bowtell and A. E. G. Stuart, Phys. Rev. D 15, 3580 (1977).
http://dx.doi.org/10.1103/PhysRevD.15.3580
18.
18. S. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zarkharov, Theory of Solitons (Consultants Bureau, New York, 1984).
19.
19. Z. Wu, F. M. Peeters, and K. Chang, Appl. Phys. Lett. 98, 162101 (2011).
http://dx.doi.org/10.1063/1.3581887
20.
20. T. Hanaguri, K. Igarashi, M. Kawamura, H. Takagi, and T. Sasagawa, Phys. Rev. B 82, 081305 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.081305
21.
21. A. Van Esch, L. Van Bockstal, J. De Boeck, G. Verbanck, A. S. van Steenbergen, P. J. Wellmann, B. Grietens, R. Bogaerts, F. Herlach, and G. Borghs, Phys. Rev. B 56, 13103 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.13103
22.
22. R. Hammer, C. Ertler, and W. Pötz, e-print arXiv:1205.6941.
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/19/10.1063/1.4807012
Loading
/content/aip/journal/apl/102/19/10.1063/1.4807012
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/19/10.1063/1.4807012
2013-05-13
2014-09-21

Abstract

Magnetic texturing on the surface of a topological insulator allows the design of wave guide networks and beam splitters for domain-wall Dirac fermions. Guided by simple analytic arguments, we model a Dirac domain-wall fermion interferometer consisting of two parallel pathways imprinted by solitonic ferromagnetic texturing. A specially developed staggered-grid leap-frog discretization scheme in 2 + 1 dimensions with absorbing boundary conditions is employed to study the interferometer in an open device geometry. Its net transmission can be tuned from constructive to destructive interference, either by variation of the magnetization texture (effective path length) or an applied gate bias (wavelength). Possible ways to observe and utilize this effect are discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/19/1.4807012.html;jsessionid=ooum3ti2n3g2.x-aip-live-03?itemId=/content/aip/journal/apl/102/19/10.1063/1.4807012&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Solitonic Dirac fermion wave guide networks on topological insulator surfaces
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/19/10.1063/1.4807012
10.1063/1.4807012
SEARCH_EXPAND_ITEM