1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Polymer–nanocrystal hybrid photodetectors with planar heterojunctions designed strategically to yield a high photoconductive gain
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/19/10.1063/1.4807422
1.
1. I. Kang, T. K. An, J.-a. Hong, H.-J. Yun, R. Kim, D. S. Chung, C. E. Park, Y.-H. Kim, and S.-K. Kwon, Adv. Mater. 25, 524 (2013).
http://dx.doi.org/10.1002/adma.201202867
2.
2. H. Minemawari, T. Yamada, H. Matsui, J. y. Tsutsumi, S. Haas, R. Chiba, R. Kumai, and T. Hasegawa, Nature (London) 475, 364 (2011).
http://dx.doi.org/10.1038/nature10313
3.
3. H. N. Tsao, D. M. Cho, I. Park, M. R. Hansen, A. Mavrinskiy, D. Y. Yoon, R. Graf, W. Pisula, H. W. Spiess, and K. Müllen, J. Am. Chem. Soc. 133, 2605 (2011).
http://dx.doi.org/10.1021/ja108861q
4.
4. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, Nature (London) 492, 234 (2012).
http://dx.doi.org/10.1038/nature11687
5.
5. S. O. Jeon, K. S. Yook, C. W. Joo, and J. Y. Lee, Adv. Mater. 22, 1872 (2010).
http://dx.doi.org/10.1002/adma.200903321
6.
6. P. Sonar, S. P. Singh, Y. Li, Z.-E. Ooi, T.-j. Ha, I. Wong, M. S. Soh, and A. Dodabalapur, Energy Environ. Sci. 4, 2288 (2011).
http://dx.doi.org/10.1039/c1ee01213d
7.
7. H. Cha, D. S. Chung, S. Y. Bae, M.-J. Lee, T. K. An, J. Hwang, K. H. Kim, Y.-H. Kim, D. H. Choi, and C. E. Park, Adv. Funct. Mater. 23, 1556 (2013).
http://dx.doi.org/10.1002/adfm.201201913
8.
8. D. S. Chung, Y. Rho, M. Ree, S.-K. Kwon, and Y.-H. Kim, ACS Appl. Mater. Interfaces 4, 4758 (2012).
http://dx.doi.org/10.1021/am301128d
9.
9. M. Sofos, J. Goldberger, D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W.-W. Tsai, L. J. Lauhon, and S. I. Stupp, Nat. Mater. 8, 68 (2009).
http://dx.doi.org/10.1038/nmat2336
10.
10. J. Gao and F. A. Hegmann, Appl. Phys. Lett. 93, 223306 (2008).
http://dx.doi.org/10.1063/1.3043431
11.
11. I. H. Campbell and B. K. Crone, J. Appl. Phys. 101, 024502 (2007).
http://dx.doi.org/10.1063/1.2422909
12.
12. X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C.-L. Shieh, B. Nilsson, and A. J. Heeger, Science 325, 1665 (2009).
http://dx.doi.org/10.1126/science.1176706
13.
13. H. Y. Chen, M. K. F. Lo, G. Yang, H. G. Monbouquette, and Y. Yang, Nat. Nanotechnol. 3, 543 (2008).
http://dx.doi.org/10.1038/nnano.2008.206
14.
14. G. Konstantatos and E. H. Sargent, Proc. IEEE 97, 1666 (2009).
http://dx.doi.org/10.1109/JPROC.2009.2025612
15.
15. D. Gupta, T. J. K. Brenner, S. A. Seifried, M. J. Lee, M. Heeney, I. McCulloch, and H. Sirringhaus, Org. Electron. 13, 36 (2012).
http://dx.doi.org/10.1016/j.orgel.2011.08.034
16.
16. Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, and L. Yu, J. Am. Chem. Soc. 131, 7792 (2009).
http://dx.doi.org/10.1021/ja901545q
17.
17. H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, Nat. Photonics 3, 649 (2009).
http://dx.doi.org/10.1038/nphoton.2009.192
18.
18. J. Hou, H.-Y. Chen, S. Zhang, R. I. Chen, Y. Yang, Y. Wu, and G. Li, J. Am. Chem. Soc. 131, 15586 (2009).
http://dx.doi.org/10.1021/ja9064975
19.
19. H. J. Son, W. Wang, T. Xu, Y. Liang, Y. Wu, G. Li, and L. Yu, J. Am. Chem. Soc. 133, 1885 (2011).
http://dx.doi.org/10.1021/ja108601g
20.
20. Y. Huang, X. Guo, F. Liu, L. Huo, Y. Chen, T. P. Russell, C. C. Han, Y. Li, and J. Hou, Adv. Mater. 24, 3383 (2012).
http://dx.doi.org/10.1002/adma.201200995
21.
21. Y. Zhou, M. Eck, C. Veit, B. Zimmermann, F. Rauscher, P. Niyamakom, S. Yilmaz, I. Dumsch, S. Allard, U. Scherf, and M. Kruger, Sol. Energy Mater. Sol. Cells. 95, 1232 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.12.041
22.
22. Z. A. Peng and X. Peng, J. Am. Chem. Soc. 123, 183 (2001).
http://dx.doi.org/10.1021/ja003633m
23.
23. L. Carbone, C. Nobile, M. De Giorgi, F. D. Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I. R. Franchini, M. Nadasan, A. F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne, and L. Manna, Nano Lett. 7, 29422950 (2007).
http://dx.doi.org/10.1021/nl0717661
24.
24. R. Bruggemann, Solid State Commun. 101, 199 (1997).
http://dx.doi.org/10.1016/S0038-1098(96)00598-4
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/19/10.1063/1.4807422
Loading
/content/aip/journal/apl/102/19/10.1063/1.4807422
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/19/10.1063/1.4807422
2013-05-17
2014-07-29

Abstract

We demonstrate an approach to enhancing the photoresponsivity of a polymer photodetector (PPD). Both conventional bulk heterojunction (BHJ) and planar heterojunction (PHJ) PPDs were fabricated considering that the interface between a CdSe nanocrystal and a polymer can create photoconductive gain. A systematic study of the illumination wavelength and light power dependence of the photocurrent gain, combined with the charge carrier transport analysis, suggested that the PHJ-PPD could yield a higher hole mobility than could be achieved in a BHJ-PPD without compromising on the selective electron trapping effects. The optimized PHJ-PPD led to a photoconductive detectivity of 1.3 × 10 cm Hz/W.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/19/1.4807422.html;jsessionid=1mnvg9or6naow.x-aip-live-02?itemId=/content/aip/journal/apl/102/19/10.1063/1.4807422&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Polymer–nanocrystal hybrid photodetectors with planar heterojunctions designed strategically to yield a high photoconductive gain
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/19/10.1063/1.4807422
10.1063/1.4807422
SEARCH_EXPAND_ITEM