1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Topography-guided spreading and drying of 6,13-bis(triisopropylsilylethynyl)-pentacene solution on a polymer insulator for the field-effect mobility enhancement
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/19/10.1063/1.4807461
1.
1. H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, and A. Facchetti, Nature 457, 679 (2009).
http://dx.doi.org/10.1038/nature07727
2.
2. M. Mas-Torrent and C. Rovira, Chem. Soc. Rev. 37, 827 (2008).
http://dx.doi.org/10.1039/b614393h
3.
3. S. Allard, M. Forster, B. Souharce, H. Thiem, and U. Scherf, Angew. Chem., Int. Ed. Engl. 47, 4070 (2008).
http://dx.doi.org/10.1002/anie.200701920
4.
4. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, Science 290, 2123 (2000).
http://dx.doi.org/10.1126/science.290.5499.2123
5.
5. T. Sekitani, Y. Noguchi, U. Zschieschang, H. Klauk, and T. Someya, Proc. Natl. Acad. Sci. U.S.A. 105, 4976 (2008).
http://dx.doi.org/10.1073/pnas.0708340105
6.
6. Y. H. Kim, B. Yoo, J. E. Anthony, and S. K. Park, Adv. Mater. 24, 497 (2012).
http://dx.doi.org/10.1002/adma.201103032
7.
7. P. Liu, Y. Wu, Y. Li, B. S. Ong, and S. Zhu, J. Am. Chem. Soc. 128, 4554 (2006).
http://dx.doi.org/10.1021/ja060620l
8.
8. C.-M. Keum, J.-H. Bae, M.-H. Kim, W. Choi, and S.-D. Lee, Org. Electron. 13, 778 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.02.003
9.
9. Z. R. He, K. Xiao, W. Durant, D. K. Hensley, J. E. Anthony, K. L. Hong, S. M. Kilbey, J. H. Chen, and D. W. Li, Adv. Funct. Mater. 21, 3617 (2011).
http://dx.doi.org/10.1002/adfm.201002656
10.
10. J. E. Anthony, J. S. Brooks, D. L. Eaton, and S. R. Parkin, J. Am. Chem. Soc. 123, 9482 (2001).
http://dx.doi.org/10.1021/ja0162459
11.
11. S. C. Mannsfeld, M. L. Tang, and Z. Bao, Adv. Mater. 23, 127 (2011).
http://dx.doi.org/10.1002/adma.201003135
12.
12. C. W. Sele, B. K. C. Kjellander, B. Niesen, M. J. Thornton, J. B. P. H. van der Putten, K. Myny, H. J. Wondergem, A. Moser, R. Resel, A. J. J. M. van Breemen, N. van Aerle, P. Heremans, J. E. Anthony, and G. H. Gelinck, Adv. Mater. 21, 4926 (2009).
http://dx.doi.org/10.1002/adma.200901548
13.
13. G. Giri, E. Verploegen, S. C. Mannsfeld, S. Atahan-Evrenk, H. Kim do, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, Nature 480, 504 (2011).
http://dx.doi.org/10.1038/nature10683
14.
14. R. L. Headrick, S. Wo, F. Sansoz, and J. E. Anthony, Appl. Phys. Lett. 92, 063302 (2008).
http://dx.doi.org/10.1063/1.2839394
15.
15. J. Park, C.-M. Keum, J.-H. Kim, S.-D. Lee, M. Payne, M. Petty, J. E. Anthony, and J.-H. Bae, Appl. Phys. Lett. 102, 013306 (2013).
http://dx.doi.org/10.1063/1.4774001
16.
16. A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, Nature 444, 913 (2006).
http://dx.doi.org/10.1038/nature05427
17.
17. D. W. Berreman, Phys. Rev. Lett. 28, 1683 (1972).
http://dx.doi.org/10.1103/PhysRevLett.28.1683
18.
18. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature 389, 827 (1997).
http://dx.doi.org/10.1038/39827
19.
19. H. Hu and R. G. Larson, J. Phys. Chem. B 110, 7090 (2006).
http://dx.doi.org/10.1021/jp0609232
20.
20. D. Soltman and V. Subramanian, Langmuir 24, 2224 (2008).
http://dx.doi.org/10.1021/la7026847
21.
21. M. Gleiche, L. F. Chi, and H. Fuchs, Nature 403, 173 (2000).
http://dx.doi.org/10.1038/35003149
22.
22. J. Y. Chung, J. P. Youngblood, and C. M. Stafford, Soft Matter 3, 1163 (2007).
http://dx.doi.org/10.1039/b705112c
23.
23. W. Choi, A. Tuteja, J. M. Mabry, R. E. Cohen, and G. H. McKinley, J. Colloid Interface Sci. 339, 208 (2009).
http://dx.doi.org/10.1016/j.jcis.2009.07.027
24.
24. S. G. Lee, H. S. Lim, D. Y. Lee, D. Kwak, and K. Cho, Adv. Funct. Mater. 23, 547 (2013).
http://dx.doi.org/10.1002/adfm.201201541
25.
25. R. N. Wenzel, Ind. Eng. Chem. 28, 988 (1936).
http://dx.doi.org/10.1021/ie50320a024
26.
26. A. Lafuma and D. Quere, Nature Mater. 2, 457 (2003).
http://dx.doi.org/10.1038/nmat924
27.
27. X. J. Feng and L. Jiang, Adv. Mater. 18, 3063 (2006).
http://dx.doi.org/10.1002/adma.200501961
28.
28. J.-H. Kim, S. Kumar, and S.-D. Lee, Phys. Rev. E 57, 5644 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.5644
29.
29. J.-H. Lee, C.-J. Yu, and S.-D. Lee, Mol. Cryst. Liq. Cryst. 321, 317 (1998).
http://dx.doi.org/10.1080/10587259808025098
30.
30. C.-J. Yu, J.-H. Bae, C.-M. Keum, and S.-D. Lee, Curr. Appl. Phys. 10, 64 (2010).
http://dx.doi.org/10.1016/j.cap.2009.04.013
31.
31. R. Bourguiga, M. Mahdouani, S. Mansouri, and G. Horowitz, Eur. Phys. J: Appl. Phys. 39, 7 (2007).
http://dx.doi.org/10.1051/epjap:2007101
32.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/19/10.1063/1.4807461
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic diagram showing the construction of UT of PVP on top of the uniform PVP insulator by inkjet printing. The radius of a single PVP droplet and the printing pitch are denoted by and , respectively. The width and the height of the ridge formed by a series of the droplets printed in line are and , respectively. The center-to-center distance between two adjacent ridges is . The inset is the optical microscopic image of a single PVP droplet pattern showing the coffee-ring effect. (b) The optical microscopic image of PVP ridges constructed on the uniform PVP layer by inkjet printing and the geometrical profiles of several PVP ridges. The -axis and -axis are defined as the directions perpendicular and parallel to UT, respectively.

Image of FIG. 2.

Click to view

FIG. 2.

The contact angles of water on (a) the uniform PVP insulator prepared by spin-coating ( ), (b) on PVP insulator with the UT measured along the -axis ( ), and (c) on PVP insulator with UT measured along the -axis ( ). (d) The schematic illustration of an elongated TIPS-pentacene droplet formed on PVP insulator with UT by anisotropic wetting. The black dashed arrows indicate the directions of preferential spreading of the droplet along the ridges. The optical microscopic images of the TIPS-pentacene films prepared (e) on a uniform PVP film and (f) on PVP with UT. The radial domains on the uniform PVP and the elongated, bilateral domains along UT of PVP are indicated by black solid arrows.

Image of FIG. 3.

Click to view

FIG. 3.

(a) The experimental setup for the measurements of the optical anisotropy. The optical retardation values for (b) the uniform PVP (open circles) and PVP with UT (filled circles), (c) TIPS-pentacene film on the uniform PVP, and (d) TIPS-pentacene film on PVP with UT. Different colors represent five different samples.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Schematic diagram showing a TIPS-pentacene OFET on PVP insulator with UT in a bottom-gate, top-contact configuration. (b) The output characteristics as a function of drain voltage for the gate voltages of −10 V (solid lines), −30 V (dotted lines), and −50 V (dashed lines) for three OFETs on the uniform PVP (black lines), on PVP with UT perpendicular to the channel (red lines), and on PVP with UT parallel to the channel (blue lines). (c) The transfer curves for the three cases as a function of the gate voltage at the drain voltage of −50 V. The insets are the optical microscopic images of the channel regions for the three cases. Histograms showing the distribution of(d) the current on-off ratio values and (e) that of the mobility values for the three cases.

Loading

Article metrics loading...

/content/aip/journal/apl/102/19/10.1063/1.4807461
2013-05-17
2014-04-17

Abstract

We report on the enhancement of the field-effect mobility of solution-processed 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) by unidirectional topography (UT) of an inkjet-printed polymer insulator. The UT leads to anisotropic spreading and drying of the TIPS-pentacene droplet and enables to spontaneously develop the ordered structures during the solvent evaporation. The mobility of the UT-dictated TIPS-pentacene film (0.202 ± 0.012 cm/Vs) is found to increase by more than a factor of two compared to that of the isotropic case (0.090 ± 0.032 cm/Vs). The structural arrangement of the TIPS-pentacene molecules in relation to the mobility enhancement is described within an anisotropic wetting formalism. Our UT-based approach to the mobility enhancement is easily applicable to different classes of soluble organic field-effect transistors by adjusting the geometrical parameters such as the height, the width, and the periodicity of the UT of an inkjet-printed insulator.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/19/1.4807461.html;jsessionid=7j1oois6nbni9.x-aip-live-03?itemId=/content/aip/journal/apl/102/19/10.1063/1.4807461&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Topography-guided spreading and drying of 6,13-bis(triisopropylsilylethynyl)-pentacene solution on a polymer insulator for the field-effect mobility enhancement
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/19/10.1063/1.4807461
10.1063/1.4807461
SEARCH_EXPAND_ITEM