1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/2/10.1063/1.4775583
1.
1. S. K. Banerjee, L. F. Register, E. Tutuc, D. Basu, S. Kim, D. Reddy, and A. H. MacDonald, Proc. IEEE 98, 2032 (2010).
http://dx.doi.org/10.1109/JPROC.2010.2064151
2.
2. S. K. Min, W. Y. Kim, Y. Cho, and K. S. Kim, Nature Nanotechnol. 6, 162 (2011).
http://dx.doi.org/10.1038/nnano.2010.283
3.
3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
4.
4. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hones, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.02.024
5.
5. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).
http://dx.doi.org/10.1126/science.1156965
6.
6. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).
http://dx.doi.org/10.1021/nl0731872
7.
7. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).
http://dx.doi.org/10.1126/science.1157996
8.
8. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
http://dx.doi.org/10.1038/nature07719
9.
9. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).
http://dx.doi.org/10.1038/nnano.2010.132
10.
10. L. Gomez De Arco, Y. Zhang, A. Kumar, and C. Zhou, IEEE Trans. Nanotechnol. 8, 135 (2009).
http://dx.doi.org/10.1109/TNANO.2009.2013620
11.
11. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).
http://dx.doi.org/10.1126/science.1171245
12.
12. M. P. Levendorf, C. S. Ruiz-Vargas, S. Garg, and J. Park, Nano Lett. 9, 4479 (2009).
http://dx.doi.org/10.1021/nl902790r
13.
13. S. Bhaviripudi, X. Jia, M. S. Dresselhaus, and J. Kong, Nano Lett. 10, 4128 (2010).
http://dx.doi.org/10.1021/nl102355e
14.
14. T. Shen, W. Wu, Q. Yu, C. A. Richter, R. Elmquist, D. Newell, and Y. P. Chen, Appl. Phys. Lett. 99, 232110 (2011).
http://dx.doi.org/10.1063/1.3663972
15.
15. J. Sun, N. Lindvall, M. T. Cole, K. T. T. Angel, T. Wang, K. B. K. Teo, D. H. C. Chua, J. Liu, and A. Yurgens, IEEE Trans. Nanotechnol. 11, 255 (2012).
http://dx.doi.org/10.1109/TNANO.2011.2160729
16.
16. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nature Photon. 4, 611 (2010).
http://dx.doi.org/10.1038/nphoton.2010.186
17.
17. J. Sun, N. Lindvall, M. T. Cole, K. B. K. Teo, and A. Yurgens, Appl. Phys. Lett. 98, 252107 (2011).
http://dx.doi.org/10.1063/1.3602921
18.
18. J. Sun, M. T. Cole, N. Lindvall, K. B. K. Teo, and A. Yurgens, Appl. Phys. Lett. 100, 022102 (2012).
http://dx.doi.org/10.1063/1.3675632
19.
19. J. Sun, M. T. Cole, S. A. Ahmad, O. Bäcke, T. Ive, M. Löffler, N. Lindvall, E. Olsson, K. B. K. Teo, J. Liu, A. Larsson, A. Yurgens, and Å. Haglund, IEEE Trans. Semicond. Manuf. 25, 494 (2012).
http://dx.doi.org/10.1109/TSM.2012.2198676
20.
20. J. Sun, N. Lindvall, M. T. Cole, T. Wang, T. J. Booth, P. Bøggild, K. B. K. Teo, J. Liu, and A. Yurgens, J. Appl. Phys. 111, 044103 (2012).
http://dx.doi.org/10.1063/1.3686135
21.
21. L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, X. Bao, and H.-M. Cheng, Nat. Commun. 3, 699 (2012).
http://dx.doi.org/10.1038/ncomms1702
22.
22. Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, and K. P. Loh, ACS Nano 5, 9927 (2011).
http://dx.doi.org/10.1021/nn203700w
23.
23. N. Lindvall, J. Sun, G. Abdul, and A. Yurgens, Micro Nano Lett. 7, 749 (2012).
http://dx.doi.org/10.1049/mnl.2012.0211
24.
24.See supplementary material at http://dx.doi.org/10.1063/1.4775583 for more information about the graphene bubbling transfer. [Supplementary Material]
25.
25. S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. K. Banerjee, Appl. Phys. Lett. 94, 062107 (2009).
http://dx.doi.org/10.1063/1.3077021
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/2/10.1063/1.4775583
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematic illustration of the frame assisted bubbling transfer. (a) Deposition of the PET frame on top of the sample and etching of the graphene at the unprotected side of Cu with O2 plasma. (b) H2 bubbling separation of the frame/PMMA/graphene from the Cu foil induced by H2O electrolysis. (c) Frame removal after transfer.

Image of FIG. 2.

Click to view

FIG. 2.

Images of different stages in the graphene transfer technique. (a) Frame on the PMMA/graphene/Cu complex. (b) Detached frame/PMMA/graphene dipping into water for cleaning. (c) Simultaneous transfer to 4 target substrates ( ). (d) Optical microscope image of the transferred graphene film on 300 nm . Video of the bubbling transfer is available online. 24

Image of FIG. 3.

Click to view

FIG. 3.

Device resistance as a function of the gate voltage VG for field effect mobility measurement. In the inset, an electron diffraction pattern of the monolayer graphene film is shown.

Image of FIG. 4.

Click to view

FIG. 4.

Optical characteristics of the as-transferred graphene. (a) Raman spectrum (514.5 nm) of the graphene transferred to SiO2/Si. (b) Optical transmittance of a single layer and a bilayer graphene film transferred to glass substrates. The transmittance for monolayer and bilayer graphene is extracted from the measured values by subtracting the substrate absorption. Gr denotes graphene.

Loading

Article metrics loading...

/content/aip/journal/apl/102/2/10.1063/1.4775583
2013-01-15
2014-04-23

Abstract

An improved technique for transferring large area graphene grown by chemical vapor deposition on copper is presented. It is based on mechanical separation of the graphene/copper by H2 bubbles during H2O electrolysis, which only takes a few tens of seconds while leaving the copper cathode intact. A semi-rigid plastic frame in combination with thin polymer layer span on graphene gives a convenient way of handling- and avoiding wrinkles and holes in graphene. Optical and electrical characterizations prove the graphene quality is better than that obtained by traditional wet etching transfer. This technique appears to be highly reproducible and cost efficient.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/2/1.4775583.html;jsessionid=298g2sckrssrt.x-aip-live-06?itemId=/content/aip/journal/apl/102/2/10.1063/1.4775583&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/2/10.1063/1.4775583
10.1063/1.4775583
SEARCH_EXPAND_ITEM