1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/2/10.1063/1.4775677
1.
1. O. Söderberg, Y. Ge, A. Sozinov, S.-P. Hannula, and V. K. Lindroos, “ Giant magnetostrictive materials”, in Handbook of Magnetic Materails, edited by K. H. J. Buschow (Elsevier Science, Amsterdam, 2006), Vol. 16, pp. 139.
2.
2. M. Acet, Ll. Mañosa, and A. Planes, “ Magnetic-field induced effects in martensitic Heusler-based magnetic shape memory alloys,” in Handbook of Magnetic Materials, edited by K. H. J. Buschow (Elsevier Science, Amsterdam, 2011), Vol. 19, pp. 231289.
3.
3. V. V. Martynov and V. V. Kokorin, J. Phys. III, France 2, 739 (1992).
http://dx.doi.org/10.1051/jp3:1992155
4.
4. J. Pons, V. A. Chernenko, R. Santamarta, and E. Cesari, Acta Mater. 48, 3027 (2000).
http://dx.doi.org/10.1016/S1359-6454(00)00130-0
5.
5. N. Lanska, O. Söderberg, A. Sozinov, Y. Ge, K. Ullakko, and V. K. Lindroos, J. Appl. Phys. 95, 8074 (2004).
http://dx.doi.org/10.1063/1.1748860
6.
6. A. A. Likhachev and K. Ullakko, Phys. Lett. A 275, 142 (2000).
http://dx.doi.org/10.1016/S0375-9601(00)00561-2
7.
7. A. A. Likhachev, A. Sozinov, and K. Ullakko, Mech. Mater. 38, 551 (2006).
http://dx.doi.org/10.1016/j.mechmat.2005.05.022
8.
8. A. A. Likhachev, A. Sozinov, and K. Ullakko, Mater. Sci. Eng., A 378, 513 (2004).
http://dx.doi.org/10.1016/j.msea.2003.10.353
9.
9. A. Sozinov, A. A. Likhachev, and K. Ullakko, Proc. SPIE 4333, 189 (2001).
http://dx.doi.org/10.1117/12.432756
10.
10. O. Heczko, L. Straka, V. Novak, and S. Fähler, J. Appl. Phys. 107, 09A914 (2010).
http://dx.doi.org/10.1063/1.3357409
11.
11. A. Sozinov, A. A. Likhachev, N. Lanska, O. Söderberg, K. Koho, K. Ullakko, and V. K. Lindroos, J. Phys. IV, France 115, 121 (2004).
http://dx.doi.org/10.1051/jp4:2004115015
12.
12. C. Jiang, T. Liang, H. Xu, M. Zhang, and G. Wu, Appl. Phys. Lett. 81, 2818 (2002).
http://dx.doi.org/10.1063/1.1512948
13.
13. N. Okamoto, T. Fukuda, and T. Kakeshita, Mater. Sci. Eng., A 481–482, 306 (2008).
http://dx.doi.org/10.1016/j.msea.2006.12.218
14.
14. V. Soolshenko, N. Lanska, and K. Ullakko, J. Phys. IV, France 112, 947 (2003).
http://dx.doi.org/10.1051/jp4:20031037
15.
15. O. Söderberg, L. Straka, V. Novák, O. Heczko, S.-P. Hannula, and V. K. Lindroos, Mater. Sci. Eng., A 386, 27 (2004).
http://dx.doi.org/10.1016/j.msea.2004.07.045
16.
16. S. R. Yeduru, A. Backen, S. Fahler, L. Schultz, and M. Kohl, Phys. Procedia 10, 162 (2010).
http://dx.doi.org/10.1016/j.phpro.2010.11.093
17.
17. V. A. Chernenko, M. Chmielus, and P. Müllner, Appl. Phys. Lett. 95, 104103 (2009).
http://dx.doi.org/10.1063/1.3227661
18.
18. S. Kaufmann, U. K. Roßler, O. Heczko, M. Wuttig, J. Buschbeck, L. Schultz, and S. Fähler, Phys. Rev. Lett. 104, 145702 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.145702
19.
19. S. Kaufmann, R. Niemann, T. Thersleff, U. K. Rößler, O. Heczko, J. Buschbeck, B. Holzapfel, L. Schultz, and S. Fähler, New J. Phys. 13, 053029 (2011).
http://dx.doi.org/10.1088/1367-2630/13/5/053029
20.
20. D. E. Soto-Parra, X. Moya, L. Manosa, A. Planes, H. Flores-Zuniga, F. Alvarado-Hernandez, R. A. Ochoa-Gamboa, J. A. Matutes-Aquino, and D. Rios-Jara, Philos. Mag. 90, 2771 (2010).
http://dx.doi.org/10.1080/14786431003745393
21.
21. C.-M. Li, H.-B. Luo, Q.-M. Hu, R. Yang, B. Johansson, and L. Vitos, Phys. Rev. B 84, 024206 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.024206
22.
22. C. Jiang, J. Wang, P. Li, A. Jia, and H. Xu, Appl. Phys. Lett. 95, 012501 (2009).
http://dx.doi.org/10.1063/1.3155199
23.
23. P. J. Webster, K. R. A. Ziebeck, S. L. Town, and M. S. Peak, Philos. Mag. B 49, 295 (1984).
http://dx.doi.org/10.1080/13642817408246515
24.
24. M. Chmielus, V. A. Chernenko, W. B. Knowlton, G. Kostorz, and P. Müllner, Eur. Phys. J. Spec. Top. 158, 79 (2008).
http://dx.doi.org/10.1140/epjst/e2008-00657-3
25.
25. L. Straka, A. Soroka, and A. Sozinov, Actuator 2010 (WFB Wirtschaftsförderung Bremen GmbH, Division Messe Bremen, Germany, 2010), p. 727 (ISBN 978-3-933339-12-6).
26.
26. L. Straka, H. Hänninen, A. Soroka, and A. Sozinov, J. Phys.: Conf. Ser. 303, 012079 (2011).
http://dx.doi.org/10.1088/1742-6596/303/1/012079
27.
27. L. Straka, “ Magnetic and magneto-mechanical properties of Ni–Mn–Ga magnetic shape memory alloys,” Ph.D. dissertation (Helsinki University of Technology, 2007).
28.
28. A. N. Lavrov, S. Komiya, and Y. Ando, Nature 418, 385 (2002).
http://dx.doi.org/10.1038/418385a
29.
29. J. H. Zhang, W. Y. Peng, S. Chen, T. Y. Hsu, and X. Zuyao, Appl. Phys. Lett. 86, 022506 (2005).
http://dx.doi.org/10.1063/1.1850613
30.
30. M. Yamamoto, T. Terai, and T. Kakeshita, Philos. Mag. 90, 2125 (2010).
http://dx.doi.org/10.1080/14786430903581296
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/2/10.1063/1.4775677
Loading
/content/aip/journal/apl/102/2/10.1063/1.4775677
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/2/10.1063/1.4775677
2013-01-14
2014-07-14

Abstract

Magnetic field-induced strain (MFIS) of 12% is reported in ferromagnetic Ni 46Mn24Ga22Co4 Cu 4 martensite exhibiting non-modulated (NM) tetragonal crystal structure with lattice parameter ratio . The strain was measured at ambient temperature in a magnetic field of the order of 1 T. The twinning stress and the magnetic stress were also measured and the condition for a giant MFIS observation was confirmed. The MFIS was achieved in NM Ni 46Mn24Ga22Co4 Cu 4 martensite by considerable lowering of the value as compared to the values for NM martensites in ternary Ni-Mn-Ga system.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/2/1.4775677.html;jsessionid=7cakoea20hnml.x-aip-live-06?itemId=/content/aip/journal/apl/102/2/10.1063/1.4775677&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: 12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/2/10.1063/1.4775677
10.1063/1.4775677
SEARCH_EXPAND_ITEM