1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Organic field-effect transistor nonvolatile memories based on hybrid nano-floating-gate
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/2/10.1063/1.4776677
1.
1. Y. L. Guo, G. Yu, and Y. Q. Liu, Adv. Mater. 22, 4427 (2010).
http://dx.doi.org/10.1002/adma.201000740
2.
2. P. Heremans, G. H. Gelinck, R. Müller, K. J. Baeg, D. Y. Kim, and Y. Y. Noh, Chem. Mater. 23, 341 (2011).
http://dx.doi.org/10.1021/cm102006v
3.
3. W. L. Leong, N. Mathews, B. Tan, S. Vaidyanathan, F. Dötz, and S. Mhaisalkar, J. Mater. Chem. 21, 5203 (2011).
http://dx.doi.org/10.1039/c0jm03974h
4.
4. Q. D. Ling, D. J. Liaw, C. Zhu, D. S. H. Chan, E. T. Kang, and K. G. Neoh, Prog. Polym. Sci. 33, 917 (2008).
http://dx.doi.org/10.1016/j.progpolymsci.2008.08.001
5.
5. T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, and T. Someya, Science 326, 1516 (2009).
http://dx.doi.org/10.1126/science.1179963
6.
6. R. C. G. Naber, C. Tanase, P. W. M. Blom, G. H. Gelinck, A. W. Marsman, F. J. Touwslager, S. Setayesh, and D. M. de Leeuw, Nature Mater. 4, 243 (2005).
http://dx.doi.org/10.1038/nmat1329
7.
7. X. J. She, C. H. Liu, Q. J. Sun, X. Gao, and S. D. Wang, Org. Electron. 13, 1908 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.05.051
8.
8. S. T. Han, Y. Zhou, Z. X. Xu, V. A. L. Roy, and T. F. Hung, J. Mater. Chem. 21, 14575 (2011).
http://dx.doi.org/10.1039/c1jm12113h
9.
9. K. J. Baeg, Y. Y. Noh, H. Sirringhaus, and D. Y. Kim, Adv. Funct. Mater. 20, 224 (2010).
http://dx.doi.org/10.1002/adfm.200901677
10.
10. S. J. Kim and J. S. Lee, Nano Lett. 10, 2884 (2010).
http://dx.doi.org/10.1021/nl1009662
11.
11. C. W. Tseng and Y. T. Tao, J. Am. Chem. Soc. 131, 12441 (2009).
http://dx.doi.org/10.1021/ja904882m
12.
12. L. Zhen, W. Guan, L. Shang, M. Liu, and G. Liu, J. Phys. D: Appl. Phys. 41, 135111 (2008).
http://dx.doi.org/10.1088/0022-3727/41/13/135111
13.
13. S. Wang, J. Pu, D. S. H. Chan, B. J. Cho, and K. P. Loh, Appl. Phys. Lett. 96, 143109 (2010).
http://dx.doi.org/10.1063/1.3383234
14.
14. T. W. Kim, Y. Gao, O. Acton, H. L. Yip, H. Ma, H. Chen, and A. K. Y. Jen, Appl. Phys. Lett. 97, 023310 (2010).
http://dx.doi.org/10.1063/1.3464292
15.
15. Y. M. Kim, S. J. Kim, and J. S. Lee, IEEE Electron. Devices Lett. 31, 503 (2010).
http://dx.doi.org/10.1109/LED.2010.2041743
16.
16. X. Huang, X. Y. Qi, F. Boey, and H. Zhang, Chem. Soc. Rev. 41, 666 (2012).
http://dx.doi.org/10.1039/c1cs15078b
17.
17. C. H. Liu, B. H. Mao, J. Gao, S. Zhang, X. Gao, Z. Liu, S. T. Lee, X. H. Sun, and S. D. Wang, Carbon 50, 3008 (2012).
http://dx.doi.org/10.1016/j.carbon.2012.02.086
18.
18. L. J. Cote, F. Kim, and J. Huang, J. Am. Chem. Soc. 131, 1043 (2008).
http://dx.doi.org/10.1021/ja806262m
19.
19. S. D. Wang, T. Miyadera, T. Minari, Y. Aoyagi, and K. Tsukagoshi, Appl. Phys. Lett. 93, 043311 (2008).
http://dx.doi.org/10.1063/1.2967193
20.
20. M. Debucquoy, M. Rockelé, J. Genoe, G. H. Gelinck, and P. Heremans, Org. Electron. 10, 1252 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.07.005
21.
21. V. Podzorov and M. E. Gershenson, Phys. Rev. Lett. 95, 016602 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.016602
22.
22. Y. Y. Noh, J. Ghim, S. J. Kang, K. J. Baeg, D. Y. Kim, and K. Yase, J. Appl. Phys. 100, 094501 (2006).
http://dx.doi.org/10.1063/1.2364449
23.
23. Y. L. Guo, C. A. Di, S. H. Ye, X. N. Sun, J. Zheng, Y. G. Wen, W. P. Wu, G. Yu, and Y. Q. Liu, Adv. Mater. 21, 1954 (2009).
http://dx.doi.org/10.1002/adma.200802430
24.
24. S. M. Sze, Physics of Semiconductor Devices (Wiley Interscience, New York, 1981).
25.
25.See supplementary material at http://dx.doi.org/10.1063/1.4776677 for AFM images of PS layers. [Supplementary Material]
26.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/2/10.1063/1.4776677
Loading
/content/aip/journal/apl/102/2/10.1063/1.4776677
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/2/10.1063/1.4776677
2013-01-17
2014-07-23

Abstract

High performance organic field-effect transistor nonvolatile memory is achieved by integrating gold nanoparticles and graphene oxide sheets as the hybrid nano-floating-gate. The device shows a large memory window of about 40 V, high ON/OFF ratio of reading current over 104, excellent programming/erasing endurance, and retention ability. The hybrid nano-floating-gate can increase the density of charge trapping sites, which are electrically separate from each other and thus suppress the stored charge leakage. The memory window is increased under illumination, and the results indicate that the photon-generated carriers facilitate the electron trapping but have almost no effect on the hole trapping.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/2/1.4776677.html;jsessionid=1jkmk9o6hbr6h.x-aip-live-06?itemId=/content/aip/journal/apl/102/2/10.1063/1.4776677&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Organic field-effect transistor nonvolatile memories based on hybrid nano-floating-gate
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/2/10.1063/1.4776677
10.1063/1.4776677
SEARCH_EXPAND_ITEM