1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/2/10.1063/1.4776707
1.
1. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010).
http://dx.doi.org/10.1038/nnano.2010.89
2.
2. S. K. Banerjee, L. F. Register, E. Tutuc, D. Basu, S. Kim, D. Reddy, and A. H. MacDonald, Proc. IEEE 98, 2032 (2010).
http://dx.doi.org/10.1109/JPROC.2010.2064151
3.
3. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).
http://dx.doi.org/10.1038/nnano.2010.132
4.
4. T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, Nat. Photonics 6, 105 (2012).
http://dx.doi.org/10.1038/nphoton.2011.318
5.
5. R. V. Noorden, Nature 483, S32 (2012).
http://dx.doi.org/10.1038/483S32a
6.
6. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).
http://dx.doi.org/10.1126/science.1171245
7.
7. T. Hesjedal, Appl. Phys. Lett. 98, 133106 (2011).
http://dx.doi.org/10.1063/1.3573866
8.
8. T. Yamada, M. Ishihara, J. Kim, M. Hasegawa, and S. Iijima, Carbon 50, 2615 (2012).
http://dx.doi.org/10.1016/j.carbon.2012.02.020
9.
9. I. Vlassiouk, S. Smirnov, I. Ivanov, P. F. Fulvio, S. Dai, H. Meyer, M. Chi, D. Hensley, P. Datskos, and N. V. Lavrik, Nanotechnology 22, 275716 (2011).
http://dx.doi.org/10.1088/0957-4484/22/27/275716
10.
10. X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E. M. Vogel, E. Voelkl, L. Colombo, and R. S. Ruoff, Nano Lett. 10, 4328 (2010).
http://dx.doi.org/10.1021/nl101629g
11.
11. Z. Luo, Y. Lu, D. W. Singer, M. E. Berck, L. A. Somers, B. R. Goldsmith, and A. T. C. Johnson, Chem. Mater. 23, 1441 (2011).
http://dx.doi.org/10.1021/cm1028854
12.
12. L. Liu, H. Zhou, R. Cheng, Y. Chen, Y.-C. Lin, Y. Qu, J. Bai, I. A. Ivanov, G. Liu, Y. Huang, and X. Duan, J. Mater. Chem. 22, 1498 (2012).
http://dx.doi.org/10.1039/c1jm14272k
13.
13. H. Watanabe, M. Susa, H. Fukuyama, and K. Nagata, Int. J. Thermophys. 24, 1105 (2003).
http://dx.doi.org/10.1023/A:1025013320127
14.
14. A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu, and J. Kong, J. Phys. Chem. C 112, 17741 (2008).
http://dx.doi.org/10.1021/jp807380s
15.
15. A. W. Robertson and J. H. Warner, Nano Lett. 11, 1182 (2011).
http://dx.doi.org/10.1021/nl104142k
16.
16. B. Wu, D. Geng, Y. Guo, L. Huang, Y. Xue, J. Zheng, J. Chen, G. Yu, Y. Liu, L. Jiang, and W. Hu, Adv. Mater. 23, 3522 (2011).
http://dx.doi.org/10.1002/adma.201101746
17.
17. J. D. Wood, S. W. Schmucker, A. S. Lyons, E. Pop, and J. W. Lyding, Nano Lett. 11, 4547 (2011).
http://dx.doi.org/10.1021/nl201566c
18.
18. T. Yoon, W. C. Shin, T. Y. Kim, J. H. Mun, T.-S. Kim, and B. J. Cho, Nano Lett. 12, 1448 (2012).
http://dx.doi.org/10.1021/nl204123h
19.
19. L. Gong, I. A. Kinloch, R. J. Young, I. Riaz, R. Jalil, and K. S. Novoselov, Adv. Mater. 22, 2694 (2010).
http://dx.doi.org/10.1002/adma.200904264
20.
20. W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, Phys. Rev. B 80, 235402 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.235402
21.
21. H.-J. Shin, K. K. Kim, A. Benayad, S.-M. Yoon, H. K. Park, I.-S. Jung, M. H. Jin, H.-K. Jeong, J. M. Kim, J.-Y. Choi, and Y. H. Lee, Adv. Funct. Mater. 19, 1987 (2009).
http://dx.doi.org/10.1002/adfm.200900167
22.
22. C. Yan, K.-S. Kim, S.-K. Lee, S.-H. Bae, B. H. Hong, J.-H. Kim, H.-J. Lee, and J.-H. Ahn, ACS Nano 6, 2096 (2012).
http://dx.doi.org/10.1021/nn203923n
23.
23. D. R. Roisum, Tappi J. 79, 217 (1996).
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/2/10.1063/1.4776707
Loading
/content/aip/journal/apl/102/2/10.1063/1.4776707
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/2/10.1063/1.4776707
2013-01-17
2014-08-30

Abstract

A high-quality graphene transparent conductive film was fabricated by roll-to-roll chemical vapor deposition (CVD) synthesis on a suspended copper foil and subsequent transfer. While the high temperature required for the CVD synthesis of high-quality graphene has prevented efficient roll-to-roll production thus far, we used selective Joule heating of the copper foil to achieve this. Low pressure thermal CVD synthesis and a direct roll-to-roll transfer process using photocurable epoxy resin allowed us to fabricate a 100-m-long graphene transparent conductive film with a sheet resistance as low as 150 Ω/sq, which is comparable to that of state-of-the-art CVD-grown graphene films.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/2/1.4776707.html;jsessionid=2je50s0kksk4t.x-aip-live-06?itemId=/content/aip/journal/apl/102/2/10.1063/1.4776707&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/2/10.1063/1.4776707
10.1063/1.4776707
SEARCH_EXPAND_ITEM