1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
The charge-trapping and triplet-triplet annihilation processes in organic light-emitting diodes: A duty cycle dependence study on magneto-electroluminescence
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/2/10.1063/1.4788681
1.
1. J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, Chem. Phys. Lett. 380, 710 (2003).
http://dx.doi.org/10.1016/j.cplett.2003.09.086
2.
2. O. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Kohler, M. K. Al-Suti, and M. S. Khan, Phys. Rev. B 72, 205202 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205202
3.
3. T. D. Nguyen, Y. Sheng, J. Rybicki, and M. Wohlgenannt, Phys. Rev. B 77, 235209 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235209
4.
4. P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans, and M. Wohlgenannt, Phys. Rev. Lett. 99, 216801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.216801
5.
5. P. Desai, P. Shakya, T. Kreouzis, W. P. Gillin, N. A. Morley, and M. R. J. Gibbs, Phys. Rev. B 75, 094423 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.094423
6.
6. N. J. Harmon and M. E. Flatte, Phys. Rev. Lett. 108, 186602 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.186602
7.
7. N. J. Harmon and M. E. Flatte, Phys. Rev. B 85, 075204 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.075204
8.
8. N. J. Harmon and M. E. Flatte, Phys. Rev. B 85, 245213 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.245213
9.
9. R. Liu, Y. Zhang, Y. L. Lei, P. Chen, and Z. H. Xiong, J. Appl. Phys. 105, 093719 (2009).
http://dx.doi.org/10.1063/1.3125507
10.
10. A. H. Davis and K. Bussmann, J. Vac. Sci. Technol. A 22, 1885 (2004).
http://dx.doi.org/10.1116/1.1759347
11.
11. A. Buchschuster, T. D. Schmidt, and W. Brutting, Appl. Phys. Lett. 100, 123302 (2012).
http://dx.doi.org/10.1063/1.3696051
12.
12. L. Xin, C. Li, F. Li, S. Liu, and B. Hu, Appl. Phys. Lett. 95, 123306 (2009).
http://dx.doi.org/10.1063/1.3233973
13.
13. F. Li, L. Xin, S. Liu, and B. Hu, Appl. Phys. Lett. 97, 073301 (2010).
http://dx.doi.org/10.1063/1.3478014
14.
14. Q. Peng, J. Sun, X. Li, M. Li, and F. Li, Appl. Phys. Lett. 99, 033509 (2011).
http://dx.doi.org/10.1063/1.3615305
15.
15. J. Sun, Q. Peng, X. Li, M. Li, and F. Li, Synth. Met. 162, 257 (2012).
http://dx.doi.org/10.1016/j.synthmet.2011.11.033
16.
16. M. S. Meruvia, J. A. Freire, I. A. Hu¨mmelgen, J. Gruber, and C. F. O. Graeff, Org. Electron. 8, 695 (2007).
http://dx.doi.org/10.1016/j.orgel.2007.05.007
17.
17. S. Majumdar, H. S. Majumdar, H. Aarnio, and R. Österbacka, Phys. Status Solidi (RRL) 3, 242 (2009).
http://dx.doi.org/10.1002/pssr.200903193
18.
18. W. Wagemans, P. Janssen, E. H. M. van der Heijden, M. Kemerink, and B. Koopmans, Appl. Phys. Lett. 97, 123301 (2010).
http://dx.doi.org/10.1063/1.3491217
19.
19. P. Janssen, W. Wagemans, W. Verhoeven, E. H. M. van der Heijden, M. Kemerink, and B. Koopmans, Synth. Met. 161, 617 (2011).
http://dx.doi.org/10.1016/j.synthmet.2011.01.013
20.
20. Y. Sheng, T. D. Nguyen, G. Veeraraghavan, O. Mermer, M. Wohlgenannt, S. Qiu, and U. Scherf, Phys. Rev. B 74, 045213 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.045213
21.
21. U. Niedermeier, M. Vieth, R. Pätzold, W. Sarfert, and H. von Seggern, Appl. Phys. Lett. 92, 193309 (2008).
http://dx.doi.org/10.1063/1.2924765
22.
22. B. Hu and Y. Wu, Nat. Mater. 6, 985 (2007).
http://dx.doi.org/10.1038/nmat2034
23.
23. B. Ding, Y. Yao, X. Sun, X. Gao, Z. Xie, Z. Sun, Z. Wang, X. Ding, Y. Wu, X. Jin, W. Choy, C. Q. Wu, and X. Hou, Phys. Rev. B 82, 205209 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.205209
24.
24. F. L. Bloom, W. Wagemans, M. Kemerink, and B. Koopmans, Phys. Rev. Lett. 99, 257201 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.257201
25.
25. F. L. Bloom, M. Kemerink, W. Wagemans, and B. Koopmans, Phys. Rev. Lett. 103, 066601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.066601
26.
26. J. D. Bergeson, V. N. Prigodin, D. M. Lincoln, and A. J. Epstein, Phys. Rev. Lett. 100, 067201 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.067201
27.
27. R. C. Johnson, R. E. Merrifield, P. Avakian, and R. B. Flippen, Phys. Rev. Lett. 19, 285 (1967).
http://dx.doi.org/10.1103/PhysRevLett.19.285
28.
28. R. C. Johnson and R. E. Merrifield, Phys. Rev. B 1, 896 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.896
29.
29. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystal and Polymers (Oxford, New York, 1999), Chap. I, pp. 141143.
30.
30. C. R. McNeill, I. Hwang, and N. C. Greenham, J. Appl. Phys. 106, 024507 (2009).
http://dx.doi.org/10.1063/1.3177337
31.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/2/10.1063/1.4788681
Loading
/content/aip/journal/apl/102/2/10.1063/1.4788681
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/2/10.1063/1.4788681
2013-01-17
2014-09-02

Abstract

We studied the magneto-electroluminescence (MEL) in tri-(8-hydroxyquinoline)-aluminum (Alq3)-based organic light-emitting devices through both steady-state and transient methods. As the magnetic field increases, the MEL exhibits a rapid rise, followed by the saturation tendency at all voltages in the steady-state measurement, but in the transient measurement it first increases to a maximum and then decreases to negative values when the driving voltages are higher than 8V. Furthermore, we found that the MEL strongly depends on the duty cycle of the pulse voltage. Finally, by employing the triplet-triplet annihilation model combined with the charge trapping effects, we explained the duty cycle dependence of MELs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/2/1.4788681.html;jsessionid=23ek7ib989q7.x-aip-live-06?itemId=/content/aip/journal/apl/102/2/10.1063/1.4788681&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The charge-trapping and triplet-triplet annihilation processes in organic light-emitting diodes: A duty cycle dependence study on magneto-electroluminescence
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/2/10.1063/1.4788681
10.1063/1.4788681
SEARCH_EXPAND_ITEM