1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
The charge-trapping and triplet-triplet annihilation processes in organic light-emitting diodes: A duty cycle dependence study on magneto-electroluminescence
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/2/10.1063/1.4788681
1.
1. J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, Chem. Phys. Lett. 380, 710 (2003).
http://dx.doi.org/10.1016/j.cplett.2003.09.086
2.
2. O. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Kohler, M. K. Al-Suti, and M. S. Khan, Phys. Rev. B 72, 205202 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205202
3.
3. T. D. Nguyen, Y. Sheng, J. Rybicki, and M. Wohlgenannt, Phys. Rev. B 77, 235209 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235209
4.
4. P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans, and M. Wohlgenannt, Phys. Rev. Lett. 99, 216801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.216801
5.
5. P. Desai, P. Shakya, T. Kreouzis, W. P. Gillin, N. A. Morley, and M. R. J. Gibbs, Phys. Rev. B 75, 094423 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.094423
6.
6. N. J. Harmon and M. E. Flatte, Phys. Rev. Lett. 108, 186602 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.186602
7.
7. N. J. Harmon and M. E. Flatte, Phys. Rev. B 85, 075204 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.075204
8.
8. N. J. Harmon and M. E. Flatte, Phys. Rev. B 85, 245213 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.245213
9.
9. R. Liu, Y. Zhang, Y. L. Lei, P. Chen, and Z. H. Xiong, J. Appl. Phys. 105, 093719 (2009).
http://dx.doi.org/10.1063/1.3125507
10.
10. A. H. Davis and K. Bussmann, J. Vac. Sci. Technol. A 22, 1885 (2004).
http://dx.doi.org/10.1116/1.1759347
11.
11. A. Buchschuster, T. D. Schmidt, and W. Brutting, Appl. Phys. Lett. 100, 123302 (2012).
http://dx.doi.org/10.1063/1.3696051
12.
12. L. Xin, C. Li, F. Li, S. Liu, and B. Hu, Appl. Phys. Lett. 95, 123306 (2009).
http://dx.doi.org/10.1063/1.3233973
13.
13. F. Li, L. Xin, S. Liu, and B. Hu, Appl. Phys. Lett. 97, 073301 (2010).
http://dx.doi.org/10.1063/1.3478014
14.
14. Q. Peng, J. Sun, X. Li, M. Li, and F. Li, Appl. Phys. Lett. 99, 033509 (2011).
http://dx.doi.org/10.1063/1.3615305
15.
15. J. Sun, Q. Peng, X. Li, M. Li, and F. Li, Synth. Met. 162, 257 (2012).
http://dx.doi.org/10.1016/j.synthmet.2011.11.033
16.
16. M. S. Meruvia, J. A. Freire, I. A. Hu¨mmelgen, J. Gruber, and C. F. O. Graeff, Org. Electron. 8, 695 (2007).
http://dx.doi.org/10.1016/j.orgel.2007.05.007
17.
17. S. Majumdar, H. S. Majumdar, H. Aarnio, and R. Österbacka, Phys. Status Solidi (RRL) 3, 242 (2009).
http://dx.doi.org/10.1002/pssr.200903193
18.
18. W. Wagemans, P. Janssen, E. H. M. van der Heijden, M. Kemerink, and B. Koopmans, Appl. Phys. Lett. 97, 123301 (2010).
http://dx.doi.org/10.1063/1.3491217
19.
19. P. Janssen, W. Wagemans, W. Verhoeven, E. H. M. van der Heijden, M. Kemerink, and B. Koopmans, Synth. Met. 161, 617 (2011).
http://dx.doi.org/10.1016/j.synthmet.2011.01.013
20.
20. Y. Sheng, T. D. Nguyen, G. Veeraraghavan, O. Mermer, M. Wohlgenannt, S. Qiu, and U. Scherf, Phys. Rev. B 74, 045213 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.045213
21.
21. U. Niedermeier, M. Vieth, R. Pätzold, W. Sarfert, and H. von Seggern, Appl. Phys. Lett. 92, 193309 (2008).
http://dx.doi.org/10.1063/1.2924765
22.
22. B. Hu and Y. Wu, Nat. Mater. 6, 985 (2007).
http://dx.doi.org/10.1038/nmat2034
23.
23. B. Ding, Y. Yao, X. Sun, X. Gao, Z. Xie, Z. Sun, Z. Wang, X. Ding, Y. Wu, X. Jin, W. Choy, C. Q. Wu, and X. Hou, Phys. Rev. B 82, 205209 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.205209
24.
24. F. L. Bloom, W. Wagemans, M. Kemerink, and B. Koopmans, Phys. Rev. Lett. 99, 257201 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.257201
25.
25. F. L. Bloom, M. Kemerink, W. Wagemans, and B. Koopmans, Phys. Rev. Lett. 103, 066601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.066601
26.
26. J. D. Bergeson, V. N. Prigodin, D. M. Lincoln, and A. J. Epstein, Phys. Rev. Lett. 100, 067201 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.067201
27.
27. R. C. Johnson, R. E. Merrifield, P. Avakian, and R. B. Flippen, Phys. Rev. Lett. 19, 285 (1967).
http://dx.doi.org/10.1103/PhysRevLett.19.285
28.
28. R. C. Johnson and R. E. Merrifield, Phys. Rev. B 1, 896 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.896
29.
29. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystal and Polymers (Oxford, New York, 1999), Chap. I, pp. 141143.
30.
30. C. R. McNeill, I. Hwang, and N. C. Greenham, J. Appl. Phys. 106, 024507 (2009).
http://dx.doi.org/10.1063/1.3177337
31.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/2/10.1063/1.4788681
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The MELs measurements of our devices: (a) the EL response of the devices driven by a constant voltage of 12 V as the magnetic field increases from 5 mT to 150 mT at a step of 5 mT, with a period of zero-magnetic field (lasting for 5 s) inserted at each step of B-field (lasting for 5 s); the inset shows the enlarged EL at the Nth step of B-field and zero-field; (b) the EL responses of the devices driven by a pulse voltage of 12 V (repetition: 1 kHz; and pulse width: 10 μs) with and without the magnetic field (150 mT), respectively; the insets (i) and (ii) show the enlarged EL signals at the turn-on region and the flat region, respectively.

Image of FIG. 2.

Click to view

FIG. 2.

The MELs as a function of the external magnetic field driven by different voltages. (a) The MELs measured in the steady-state experiment, with fitting results (solid line) using the empirical expression of MEL ∼ B 2/(B + B 0)2. (b) The MELs measured in the transient experiment (pulse frequency: 1 KHz; width: 10 μs).

Image of FIG. 3.

Click to view

FIG. 3.

The EL signals with (red lines) and without (black lines) the magnetic field of 150 mT of the device driven by pulse voltage of 11 V at different frequencies (a)–(c) in which the frequencies are 1, 20, and 40 kHz, respectively, the pulse width is 10 μs and different pulse widths (d)–(f) in which the pulse widths are 6, 40, and 100 μs, respectively, the frequency is 5 kHz.

Image of FIG. 4.

Click to view

FIG. 4.

The MEL versus duty cycle of devices driven by the pulse voltages (11 V): (a) at different pulse width with constant pulse frequency (5 kHz), (b) at different pulse frequency with constant pulse width (10 μs).

Loading

Article metrics loading...

/content/aip/journal/apl/102/2/10.1063/1.4788681
2013-01-17
2014-04-17

Abstract

We studied the magneto-electroluminescence (MEL) in tri-(8-hydroxyquinoline)-aluminum (Alq3)-based organic light-emitting devices through both steady-state and transient methods. As the magnetic field increases, the MEL exhibits a rapid rise, followed by the saturation tendency at all voltages in the steady-state measurement, but in the transient measurement it first increases to a maximum and then decreases to negative values when the driving voltages are higher than 8V. Furthermore, we found that the MEL strongly depends on the duty cycle of the pulse voltage. Finally, by employing the triplet-triplet annihilation model combined with the charge trapping effects, we explained the duty cycle dependence of MELs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/2/1.4788681.html;jsessionid=hh4jgrir3ai2.x-aip-live-01?itemId=/content/aip/journal/apl/102/2/10.1063/1.4788681&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The charge-trapping and triplet-triplet annihilation processes in organic light-emitting diodes: A duty cycle dependence study on magneto-electroluminescence
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/2/10.1063/1.4788681
10.1063/1.4788681
SEARCH_EXPAND_ITEM