1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Spectral dispersion of ultrafast optical limiting in Coumarin-120 by white-light continuum Z-scan
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/20/10.1063/1.4807151
1.
1. H. S. Nalwa, Adv. Mater. 5, 341 (1993).
http://dx.doi.org/10.1002/adma.19930050504
2.
2. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
http://dx.doi.org/10.1126/science.2321027
3.
3. E. A. Wachter, W. P. Partridge, W. G. Fisher, H. C. Dees, and M. G. Petersen, Proc. SPIE 3269, 68 (1998).
http://dx.doi.org/10.1117/12.312332
4.
4. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
http://dx.doi.org/10.1109/3.53394
5.
5. S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brèdas, J. W. Perry, and S. R. Marder, J. Am. Chem. Soc. 128, 14444 (2006).
http://dx.doi.org/10.1021/ja065556m
6.
6. G. S. He, T.-C. Lin, P. N. Prasad, R. Kannan, R. A. Vaia, and L.-S. Tan, Opt. Express 10, 566 (2002).
http://dx.doi.org/10.1364/OE.10.000566
7.
7. M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, Opt. Express 12, 3820 (2004).
http://dx.doi.org/10.1364/OPEX.12.003820
8.
8. M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, Opt. Express 13, 3594 (2005).
http://dx.doi.org/10.1364/OPEX.13.003594
9.
9. L. D. Boni, A. A. Andrade, L. Misoguti, C. R. Mendonça, and S. C. Zilio, Opt. Express 12, 3921 (2004).
http://dx.doi.org/10.1364/OPEX.12.003921
10.
10. R. R. Alfano, The Supercontinuum Laser Source (Springer-Verlag, New York, 1989).
11.
11. S. L. Oliveira, D. S. Corrêa, L. D. Boni, L. Misoguti, S. C. Zilio, and C. R. Mendonça, Appl. Phys. Lett. 88, 021911 (2006).
http://dx.doi.org/10.1063/1.2164914
12.
12. R. M. Christie and L. Chih-Hung, Dyes Pigm. 42, 85 (1999).
http://dx.doi.org/10.1016/S0143-7208(99)00012-1
13.
13. F. P. Schäfer, Dye Lasers (Springer-Verlag, Berlin, 1990).
14.
14. C. Serbutoviez, C. Bosshard, G. Knopfle, P. Wyss, P. Pretre, P. Gunter, K. Schenk, E. Solari, and G. Chapuis, Chem. Mater. 7, 1198 (1995).
http://dx.doi.org/10.1021/cm00054a020
15.
15. F. Pan, M. S. Wong, M. Bosch, C. Bosshard, and U. Meier, Appl. Phys. Lett. 71, 2064 (1997).
http://dx.doi.org/10.1063/1.119343
16.
16. A. E. Siegman, Lasers (University Science Books, 1986).
17.
17. A. Penzkofer, A. Laubereau, and W. Kaiser, Prog. Quantum Electron. 6, 55 (1979).
http://dx.doi.org/10.1016/0079-6727(79)90011-9
18.
18. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996).
19.
19. D. P. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics—An Introduction to Radiation-Molecule Interaction (Dover Publications, Mineola, New York, 1998).
20.
20. L. Antonov, K. Kamada, K. Ohtaa, and F. S. Kamounah, Phys. Chem. Chem. Phys. 5, 1193 (2003).
http://dx.doi.org/10.1039/b211260d
21.
21. G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, Chem. Rev. 108, 1245 (2008).
http://dx.doi.org/10.1021/cr050054x
22.
22. V. S. Muthukumar, R. Podila, B. Anand, S. S. S. Sai, K. Venkataramaniah, R. Philip, and A. M. Rao, Encyclopedia of Nanotechnology (Springer-Verlag, Heidelberg, 2013).
23.
23. L. D. Boni, L. Misoguti, S. C. Zilio, and C. R. Mendonca, ChemPhysChem 6, 1121 (2005).
http://dx.doi.org/10.1002/cphc.200400391
24.
24. A. A. Lalayan, Appl. Surf. Sci. 248, 209 (2005).
http://dx.doi.org/10.1016/j.apsusc.2005.03.004
25.
25. K. Yoshino, S. Tatsuhara, Y. Kawagishi, M. Ozaki, A. A. Zakhidov, and Z. V. Vardeny, Appl. Phys. Lett. 74, 2590 (1999).
http://dx.doi.org/10.1063/1.123907
26.
26. H. Pal, S. Nad, and M. Kumbhakar, J. Chem. Phys. 119, 443 (2003).
http://dx.doi.org/10.1063/1.1578057
27.
27. A. Fisher, C. Cremer, and E. H. K. Stelzer, Appl. Opt. 34, 1989 (1995).
http://dx.doi.org/10.1364/AO.34.001989
28.
28. C. Xu and W. W. Webb, J. Opt. Soc. Am. B 13, 481 (1996).
http://dx.doi.org/10.1364/JOSAB.13.000481
29.
29. K. Kamada, K. Ohta, Y. Iwase, and K. Kondo, Chem. Phys. Lett. 372, 386 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)00413-5
30.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/20/10.1063/1.4807151
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The WLC Z-scan set up. White-light continuum generated in the water cell by 100 fs laser pulses is used as theexcitation source for the Z-scan. Spectra of the generated white-light as well as transmitted white-light are measured on CCD spectrometers as shown.

Image of FIG. 2.

Click to view

FIG. 2.

Emission spectrum of white-light continuum generated in water upon irradiation by focused 100 fs laser pulses. Peak at 780 nm is due to the input laser radiation. Inset shows a photographic image of the WLC.

Image of FIG. 3.

Click to view

FIG. 3.

Optical limiting curves of Coumarin-120 calculated for the wavelengths (a) 690 nm, (b) 780 nm, (c) 840 nm, and (d) 900 nm. These are obtained from the corresponding Z-scan curves given in the insets, which are in turn calculated from a single WLC Z-scan measurement. Open circles are experimental data and solid curves are numerical fits for two-photon absorption (Eq. (1) ).

Image of FIG. 4.

Click to view

FIG. 4.

(a) Linear absorption spectrum of Coumarin-120 (peak at 352 nm) showing negligible absorption in the WLC spectral range. Inset shows the structure of the asymmetric molecule. (b) Dispersion of the 2PA coefficient (β) obtained from the best fit curves to the WLC Z-scan data given in Fig. 3 . The 2PA spectrum peaks at 690 nm and is similar in shape to the corresponding 1PA spectrum.

Loading

Article metrics loading...

/content/aip/journal/apl/102/20/10.1063/1.4807151
2013-05-20
2014-04-19

Abstract

Measurement of the wavelength dispersion of optical limiting in materials can provide invaluable information useful for laser safety device applications. However, it can be a tedious task when conventional tunable laser sources like the optical parametric amplifier are employed for excitation. Here we report the spectral dispersion of ultrafast optical limiting in the laser dye Coumarin-120 in the wavelength region 630 to 900 nm, measured in a single Z-scan, using the white-light continuum as the excitation source. Optical limiting is found to arise from two-photon absorption, and its spectrum agrees very well in shape with the linear absorption spectrum.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/20/1.4807151.html;jsessionid=15h00leo1c6x8.x-aip-live-02?itemId=/content/aip/journal/apl/102/20/10.1063/1.4807151&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Spectral dispersion of ultrafast optical limiting in Coumarin-120 by white-light continuum Z-scan
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/20/10.1063/1.4807151
10.1063/1.4807151
SEARCH_EXPAND_ITEM