1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Channel II photocurrent quantification in narrow optical gap polymer-fullerene solar cells with complimentary acceptor absorption
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/22/10.1063/1.4808386
1.
1. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nat. Photonics 6, 591 (2012).
http://dx.doi.org/10.1038/nphoton.2012.190
2.
2. R. C. Coffin, J. Peet, J. Rogers, and G. C. Bazan, Nat. Chem. 1, 657 (2009).
http://dx.doi.org/10.1038/nchem.403
3.
3. Y. Y. Liang and L. P. Yu, Acc. Chem. Res. 43, 1227 (2010).
http://dx.doi.org/10.1021/ar1000296
4.
4. H. X. Zhou, L. Q. Yang, S. B. Liu, and W. You, Macromolecules 43, 10390 (2010).
http://dx.doi.org/10.1021/ma101646r
5.
5. P. L. T. Boudreault, A. Najari, and M. Leclerc, Chem. Mater. 23, 456 (2011).
http://dx.doi.org/10.1021/cm1021855
6.
6. Y. Y. Liang, Z. Xu, J. B. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. P. Yu, Adv. Mater. 22, E135 (2010).
http://dx.doi.org/10.1002/adma.200903528
7.
7. Y. Fang, A. K. Pandey, A. M. Nardes, N. Kopidakis, P. L. Burn, and P. Meredith, Adv. Energy Mater. 3, 54 (2013).
http://dx.doi.org/10.1002/aenm.201200372
8.
8. J. M. Kroon, M. M. Wienk, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal, and R. A. J. Janssen, Angew. Chem., Int. Ed. 42, 3371 (2003).
http://dx.doi.org/10.1002/anie.200351647
9.
9. Y. Yao, C. J. Shi, G. Li, V. Shrotriya, Q. B. Pei, and Y. Yang, Appl. Phys. Lett. 89, 153507 (2006).
http://dx.doi.org/10.1063/1.2361082
10.
10. L. J. A. Koster, S. E. Shaheen, and J. C. Hummelen, Adv. Energy Mater. 2, 1246 (2012).
http://dx.doi.org/10.1002/aenm.201200103
11.
11. K. Tandy, G. K. Dutta, Y. Zhang, N. Venkatramaiah, M. Aljada, P. L. Burn, P. Meredith, E. B. Namdas, and S. Patil, Org. Electron. 13, 1981 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.05.046
12.
12. Y. Liang, Y. Wu, D. Feng, S.-T. Tsai, H.-J. Son, G. Li, and L. Yu, J. Am. Chem. Soc. 131, 56 (2009).
http://dx.doi.org/10.1021/ja808373p
13.
13. F. Huang, K. S. Chen, H. L. Yip, S. K. Hau, O. Acton, Y. Zhang, J. D. Luo, and A. K. Y. Jen, J. Am. Chem. Soc. 131, 13886 (2009).
http://dx.doi.org/10.1021/ja9066139
14.
14. S. Cho, J. H. Seo, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 19, 1459 (2009).
http://dx.doi.org/10.1002/adfm.200900189
15.
15. A. Moliton and J. M. Nunzi, Polym. Int. 55, 583 (2006).
http://dx.doi.org/10.1002/pi.2038
16.
16. Q. L. Song and C. M. Li, Appl. Phys. Lett. 91, 266103 (2007).
http://dx.doi.org/10.1063/1.2817589
17.
17. L. A. A. Pettersson, L. S. Roman, and O. Inganäs, J. Appl. Phys. 86, 487 (1999).
http://dx.doi.org/10.1063/1.370757
18.
18. N. C. Nicolaidis, B. S. Routley, J. L. Holdsworth, W. J. Belcher, X. J. Zhou, and P. C. Dastoor, J. Phys. Chem. C 115, 7801 (2011).
http://dx.doi.org/10.1021/jp2007683
19.
19. G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, Nano Lett. 9, 4037 (2009).
http://dx.doi.org/10.1021/nl902205n
20.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/22/10.1063/1.4808386
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The molecular structures of PTTDPP-BDT, 60-PCBM, 70-PCBM, and schematic architecture of the organic solar cell test devices.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Absorption coefficients of the pristine materials measured in solid state, (b) composite optical absorption measured on glass substrates, (c) optical constants ( and ) of polymer-fullerene blends at the 1:3 ratio; and (d) composite optical absorption simulated using these optical constants in devices of PTTDPP-BDT:60-PCBM and PTTDPP-BDT:70-PCBM blends at a film thickness of 92 nm.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Optimization of the fullerene ratio in the blend with PTTDPP-BDT—short circuit current versus fullerene ratio (% content in blend by wt.); (b) active layer thickness optimization using a transfer matrix based optical simulation—short circuit current density versus active layer thickness; (c) typical J-V (current density–voltage) characteristics of two PTTDPP-BDT devices with 60-PCBM and 70-PCBM at an identical blend ratio (1:3) and thickness (92 nm); and (d) experimental active layer thickness optimization—photovoltaic parameters of PTTDPP-BDT:70-PCBM devices versus active layer thickness (noting 60-PCBM returned similar trends).

Image of FIG. 4.

Click to view

FIG. 4.

(a) Comparative EQE spectra of PTTDPP-BDT:60-PCBM and PTTDPP-BDT:70-PCBM devices. The difference spectra are also shown, and are obtained by simple subtraction of the 60-PCBM consisting device response from the 70-PCBM device, and (b) comparison of the optical absorption (A1 and A2) and EQE difference spectra (E1 and E2) for 60-PCBM and 70-PCBM devices, where A1, A2 and E1, E2 represent absorption and EQE of photoactive layers composed of 70-PCBM and 60-PCBM, respectively. The two difference spectra are very similar showing good correspondence between the −ve and +ve regions, strongly suggesting absorption in the respective fullerenes generates the relative EQE differences.

Loading

Article metrics loading...

/content/aip/journal/apl/102/22/10.1063/1.4808386
2013-06-06
2014-04-18

Abstract

Most charge generation studies on organic solar cells focus on the conventional mode of photocurrent generation derived from light absorption in the electron donor component (so called channel I). In contrast, relatively little attention has been paid to the alternate generation pathway: light absorption in the electron acceptor followed by photo-induced hole transfer (channel II). By using the narrow optical gap polymer poly(3,6-dithieno[3,2-b]thiophen-2-yl)-2,5-bis(2-octyldodecyl)-pyrrolo-[3,4-c]pyrrole-1,4-dione-5′,5″-diyl--4,8-bis(dodecyloxy)benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl with two complimentary fullerene absorbers; phenyl-C-butyric acid methyl ester, and phenyl-C-butyric acid methyl ester (70-PCBM), we have been able to quantify the photocurrent generated each of the mechanisms and find a significant fraction (>30%), which is derived in particular from 70-PCBM light absorption.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/22/1.4808386.html;jsessionid=a5fc1n5qpqb5a.x-aip-live-03?itemId=/content/aip/journal/apl/102/22/10.1063/1.4808386&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Channel II photocurrent quantification in narrow optical gap polymer-fullerene solar cells with complimentary acceptor absorption
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/22/10.1063/1.4808386
10.1063/1.4808386
SEARCH_EXPAND_ITEM