1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Anisotropic thermal conductivity of semiconducting graphene monoxide
Rent:
Rent this article for
USD
10.1063/1.4808448
/content/aip/journal/apl/102/22/10.1063/1.4808448
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/22/10.1063/1.4808448
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

(a) Phonon dispersion for monolayer graphene monoxide, (b) the Grüneissen parameter for acoustic phonon modes in GMO. The inset in (b) shows the unit cell of centered rectangular GMO in real space and its first Brillouin zone with the high symmetry points and lines labeled.

Image of FIG. 2.
FIG. 2.

Color maps of intrinsic thermal conductivities of GMO as a function of both temperature and lateral size along the XΓ direction (a) and ΓK direction (b). (c) and (d) show the thermal conductivity of GMO in (a) and (b) normalized with respect to the thermal conductivity of graphene along the MΓ direction, respectively. The lateral size starts from 2.5 m so that the calculated thermal conductivity is diffusive, since average LA and TA phonon mean free paths for GMO are calculated as 0.48 m and 0.13 m along the armchair and the zigzag directions, respectively.

Image of FIG. 3.
FIG. 3.

Color maps of the ratio of thermal conductivity of LA mode to TA mode as a function of temperature and lateral size for GMO along the XΓ direction (a), GMO along the ΓK direction (b), and graphene along the MΓ direction (c), respectively.

Image of FIG. 4.
FIG. 4.

Phonon dispersions of the ZA mode around the zone center under isotropic strains for (a) GMO and (b) graphene, respectively. (c) Grüneissen parameters of the LA and TA modes of GMO along the XΓ (upper panel) and ΓK (lower panel) directions with respect to lattice angle. (d) Thermal conductivity of GMO as a function of lattice angle at room temperature and lateral size of 5 m along the XΓ and ΓK directions. The unstained lattice angle is 130°. Purple curves in (c) and (d) are fittings.

Loading

Article metrics loading...

/content/aip/journal/apl/102/22/10.1063/1.4808448
2013-06-03
2014-04-19
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Anisotropic thermal conductivity of semiconducting graphene monoxide
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/22/10.1063/1.4808448
10.1063/1.4808448
SEARCH_EXPAND_ITEM