1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Role of intrinsic molecular dipole in energy level alignment at organic interfaces
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/22/10.1063/1.4809567
1.
1. H. Vazquez, F. Flores, and A. Kahn, Org. Electron. 8, 241 (2007);
http://dx.doi.org/10.1016/j.orgel.2006.07.006
1. H. Vázquez, W. Gao, F. Flores, and A. Kahn, Phys. Rev. B 71, 041306R (2005);
http://dx.doi.org/10.1103/PhysRevB.71.041306
1. H. Vázquez, R. Oszwaldowski, P. Pou, J. Ortega, R. Pérez, F. Flores, and A. Kahn, Europhys. Lett. 65, 802 (2004).
http://dx.doi.org/10.1209/epl/i2003-10131-2
2.
2. C. Tengstedt, W. Osikowicz, W. R. Salaneck, I. D. Parker, C. H. Hsu, and M. Fahlman, Appl. Phys. Lett. 88(5), 053502 (2006).
http://dx.doi.org/10.1063/1.2168515
3.
3. M. Fahlman, A. Crispin, X. Crispin, S. K. M. Henze, M. P. de Jong, W. Osikowicz, C. Tengstedt, and W. R. Salaneck, J. Phys.: Condens. Matter 19, 183202 (2007).
http://dx.doi.org/10.1088/0953-8984/19/18/183202
4.
4. S. Braun, W. R. Salaneck, and M. Fahlman, Adv. Mater. 21(14), 1450 (2009).
http://dx.doi.org/10.1002/adma.200802893
5.
5. S. Braun, M. P. de Jong, W. Osikowicz, and W. R. Salaneck, Appl. Phys. Lett. 91, 202108 (2007).
http://dx.doi.org/10.1063/1.2806938
6.
6. S. Braun, X. Liu, W. R. Salaneck, and M. Fahlman, Org. Electron. 11(2), 212 (2010).
http://dx.doi.org/10.1016/j.orgel.2009.10.018
7.
7. G. Brocks, D. Çakır, M. Bokdam, M. P. de Jong, and M. Fahlman, Org. Electron. 13, 1793 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.05.041
8.
8. H. Aarnio, P. Sehati, S. Braun, M. Nyman, M. P. de Jong, M. Fahlman, and R. Österbacka, Adv. Energy Mater. 1, 792 (2011).
http://dx.doi.org/10.1002/aenm.201100074
9.
9. M. Bokdam, D. Çakır, and G. Brocks, Appl. Phys. Lett. 98, 113303 (2011).
http://dx.doi.org/10.1063/1.3565963
10.
10. W. Osikowicz, M. P. de Jong, and W. R. Salaneck, Adv. Mater. 19, 4213 (2007).
http://dx.doi.org/10.1002/adma.200700622
11.
11. V. Gohri, S. Hofmann, S. Reineke, T. Rosenow, M. Thomschke, M. Levichkova, B. Lüssem, and K. Leo, Org. Electron. 12(12), 2126 (2011);
http://dx.doi.org/10.1016/j.orgel.2011.09.002
11. M. Kim, Y. S. Lee, Y. C. Kim, M. S. Choi, and J. Y. Lee, Synth. Met. 161, 2318 (2011);
http://dx.doi.org/10.1016/j.synthmet.2011.08.041
11. B. E. Lassiter, G. Wei, S. Wang, J. D. Zimmerman, V. V. Diev, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 98(24), 243307 (2011);
http://dx.doi.org/10.1063/1.3598426
11. S. Tanida, K. Noda, H. Kawabata, and K. Matsushige, Thin Solid Films 518(2), 571 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.07.019
12.
12. A. Curioni, M. Boero, and W. Andreoni, Chem. Phys. Lett. 294, 263 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00829-X
13.
13. D. Çakir, M. Bokdam, M. P. de Jong, M. Fahlman, and G. Brocks, Appl. Phys. Lett. 100, 203302 (2012).
http://dx.doi.org/10.1063/1.4717985
14.
14. S. Duhm, G. Heimel, I. Salzmann, H. Glowatzki, R. L. Johnson, A. Vollmer, J. P. Rabe, and N. Koch, Nature Mater. 7, 326 (2008);
http://dx.doi.org/10.1038/nmat2119
14. W. Chen, H. Huang, S. Chen, Y. L. Huang, X. Y. Gao, and A. T. S. Wee, Chem. Mater. 20, 7017 (2008).
http://dx.doi.org/10.1021/cm8016352
15.
15. P. C. Rusu, G. Giovannetti, C. Weijtens, R. Coehoorn, and G. Brocks, J. Phys. Chem. C 113, 9974 (2009);
http://dx.doi.org/10.1021/jp902905y
15. P. C. Rusu, G. Giovannetti, C. Weijtens, R. Coehoorn, and G. Brocks, Phys. Rev. B 81, 125403 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.125403
16.
16. E. Ito, Y. Washizu, N. Hayashi, H. Ishii, N. Matsuie, K. Tsuboi, Y. Ouchi, Y. Harima, K. Yamashita, and K. Seki, J. Appl. Phys. 92(12), 7306 (2002).
http://dx.doi.org/10.1063/1.1518759
17.
17. Y. Okabayashi, E. Ito, T. Isoshima, and M. Hara, Appl. Phys. Exp. 5, 055601 (2012).
http://dx.doi.org/10.1143/APEX.5.055601
18.
18. S. Yanagisawa and Y. Morikawa, J. Phys.: Condens. Matter 21, 064247 (2009).
http://dx.doi.org/10.1088/0953-8984/21/6/064247
19.
19. M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, and A. Sironi, J. Am. Chem. Soc. 122, 5147 (2000).
http://dx.doi.org/10.1021/ja993608k
20.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/22/10.1063/1.4809567
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Work function Ф of NTCDA (yellow) and Alq3 (teal) layers as function of the work function of the substrate Ф. The lines are added as a guide for the eye. The dashed line indicated the Schottky-Mott limit of vacuum level alignment.

Image of FIG. 2.

Click to view

FIG. 2.

An idealized structure of an ordered layer of (meridional) Alq molecules. The arrows indicate the molecular dipole moments.

Image of FIG. 3.

Click to view

FIG. 3.

The calculated plane-averaged electrostatic potential plotted along the normal to a free-standing Alq layer in the structure of Figure 2 . The zero of the potential is placed at the calculated E level; mark the vacuum potentials left and right of the layer, and δ =  marks thepotential step induced by the layer.

Image of FIG. 4.

Click to view

FIG. 4.

UPS spectra of NTCDA and Alq films deposited in various configurations on AlO substrate.

Loading

Article metrics loading...

/content/aip/journal/apl/102/22/10.1063/1.4809567
2013-06-05
2014-04-24

Abstract

The energy level alignment in metal-organic and organic-organic junctions of the widely used materials tris-(8-hydroxyquinoline)aluminum (Alq) and 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA) is investigated. The measured alignment schemes for single and bilayer films of Alq and NTCDA are interpreted with the integer charge transfer (ICT) model. Single layer films of Alq feature a constant vacuum level shift of ∼0.2–0.4 eV in the absence of charge transfer across the interface. This finding is attributed to the intrinsic dipole of the Alq molecule and (partial) ordering of the molecules at the interfaces. The vacuum level shift changes the onset of Fermi level pinning, as it changes the energy needed for equilibrium charge transfer across the interface.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/22/1.4809567.html;jsessionid=5v91gunm0cr3d.x-aip-live-03?itemId=/content/aip/journal/apl/102/22/10.1063/1.4809567&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Role of intrinsic molecular dipole in energy level alignment at organic interfaces
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/22/10.1063/1.4809567
10.1063/1.4809567
SEARCH_EXPAND_ITEM