1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Reversible luminance decay in polymer light-emitting electrochemical cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/22/10.1063/1.4809603
1.
1. Q. B. Pei, G. Yu, C. Zhang, Y. Yang, and A. J. Heeger, Science 269(5227), 10861088 (1995).
http://dx.doi.org/10.1126/science.269.5227.1086
2.
2. Q. B. Pei, Y. Yang, G. Yu, C. Zhang, and A. J. Heeger, J. Am. Chem. Soc. 118(16), 39223929 (1996).
http://dx.doi.org/10.1021/ja953695q
3.
3. J. Gao and J. Dane, Appl. Phys. Lett. 83(15), 30273029 (2003).
http://dx.doi.org/10.1063/1.1618948
4.
4. J. Gao and J. Dane, Appl. Phys. Lett. 84(15), 27782780 (2004).
http://dx.doi.org/10.1063/1.1702126
5.
5. P. Matyba, K. Maturova, M. Kemerink, N. D. Robinson, and L. Edman, Nature Mater. 8(8), 672676 (2009).
http://dx.doi.org/10.1038/nmat2478
6.
6. D. B. Rodovsky, O. G. Reid, L. S. C. Pingree, and D. S. Ginger, ACS Nano 4(5), 26732680 (2010).
http://dx.doi.org/10.1021/nn1003315
7.
7. Y. Hu and J. Gao, J. Am. Chem. Soc. 133(7), 22272231 (2011).
http://dx.doi.org/10.1021/ja1093106
8.
8. Y. F. Hu, B. Dorin, F. Teng, and J. Gao, Org. Electron. 13(3), 361365 (2012).
http://dx.doi.org/10.1016/j.orgel.2011.12.010
9.
9. A. Inayeh, B. Dorin, and J. Gao, Appl. Phys. Lett. 101(25), 253305 (2012).
http://dx.doi.org/10.1063/1.4773235
10.
10. D. Hohertz and J. Gao, Adv. Mater. 20(17), 32983302 (2008).
http://dx.doi.org/10.1002/adma.200800068
11.
11. J. H. Shin, P. Matyba, N. D. Robinson, and L. Edman, Electrochim. Acta 52(23), 64566462 (2007).
http://dx.doi.org/10.1016/j.electacta.2007.04.068
12.
12. X. Li, J. Gao, and G. Liu, Org. Electron. 14, 14411446 (2013).
http://dx.doi.org/10.1016/j.orgel.2013.03.015
13.
13. L. Edman, D. Moses, and A. J. Heeger, Synth. Met. 138(3), 441446 (2003).
http://dx.doi.org/10.1016/S0379-6779(02)00470-8
14.
14. Y. Cao, Q. B. Pei, M. R. Andersson, G. Yu, and A. J. Heeger, J. Electrochem. Soc. 144(12), L317L320 (1997).
http://dx.doi.org/10.1149/1.1838145
15.
15. Y. Cao, G. Yu, A. J. Heeger, and C. Y. Yang, Appl. Phys. Lett. 68(23), 32183220 (1996).
http://dx.doi.org/10.1063/1.116442
16.
16. A. L. Holt, J. M. Leger, and S. A. Carter, J. Chem. Phys. 123, 044704 (2005).
http://dx.doi.org/10.1063/1.1949188
17.
17. Y. Kervella, M. Armand, and O. Stephan, J. Electrochem. Soc. 148(11), H155H160 (2001).
http://dx.doi.org/10.1149/1.1404971
18.
18. T. Wagberg, P. R. Hania, N. D. Robinson, J. H. Shin, P. Matyba, and L. Edman, Adv. Mater. 20(9), 17441749 (2008).
http://dx.doi.org/10.1002/adma.200702595
19.
19. S. Tang and L. Edman, J. Phys. Chem. Lett. 1(18), 27272732 (2010).
http://dx.doi.org/10.1021/jz1010797
20.
20. Y. Shao, G. C. Bazan, and A. J. Heeger, Adv. Mater. 19(3), 365370 (2007).
http://dx.doi.org/10.1002/adma.200602087
21.
21. Y. Shao, X. Gong, A. J. Heeger, M. Liu, and A. K. Y. Jen, Adv. Mater. 21(19), 19721975 (2009).
http://dx.doi.org/10.1002/adma.200803698
22.
22. J. F. Fang, P. Matyba, and L. Edman, Adv. Funct. Mater. 19(16), 26712676 (2009).
http://dx.doi.org/10.1002/adfm.200900479
23.
23. A. Sandstrom, P. Matyba, and L. Edman, Appl. Phys. Lett. 96(5), 053303 (2010).
http://dx.doi.org/10.1063/1.3299018
24.
24. Z. Yu, M. Wang, G. Lei, J. Liu, L. Li, and Q. Pei, J. Phys. Chem. Lett. 2(5), 367372 (2011).
http://dx.doi.org/10.1021/jz200071b
25.
25. Y. Hu, C. Tracy, and J. Gao, Appl. Phys. Lett. 88(12), 123507 (2006).
http://dx.doi.org/10.1063/1.2187408
26.
26. Y. G. Zhang, Y. F. Hu, and J. Gao, Appl. Phys. Lett. 88(16), 163507 (2006).
http://dx.doi.org/10.1063/1.2195967
27.
27. S. Alem and J. Gao, Org. Electron. 9(3), 347354 (2008).
http://dx.doi.org/10.1016/j.orgel.2007.12.006
28.
28. S. B. Meier, D. Hartmann, D. Tordera, H. J. Bolink, A. Winnacker, and W. Sarfert, Phys. Chem. Chem. Phys. 14(31), 1088610890 (2012).
http://dx.doi.org/10.1039/c2cp41323j
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/22/10.1063/1.4809603
Loading
/content/aip/journal/apl/102/22/10.1063/1.4809603
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/22/10.1063/1.4809603
2013-06-06
2014-10-24

Abstract

The luminance decay of generic sandwich polymer light-emitting electrochemical cells has been investigated. Under constant current operation, the apparent luminance decay is caused by both the formation of non-emitting black spots, which decreases the active emitting area, and the electrochemical doping, which quenches the luminescence of the light-emitting electrochemical cell film. The latter's effect on luminance, however, can be mostly reversed by letting the electrochemical doping relax. A dramatic recovery of luminance is observed when the device is stored without voltage bias and/or moderately heated between consecutive operations. The decay/recovery cycle can be repeated multiple times with little loss of luminance despite the high current density (167 mA/cm) applied. At lower current density, a freshly made device loses less than 10% of its peak luminance after over 200 h of continuous operation. Polymer light-emitting electrochemical cells therefore possess vastly longer operating lifetime if allowed to recover from the effect of reversible doping.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/22/1.4809603.html;jsessionid=2o7xlgik06h8t.x-aip-live-03?itemId=/content/aip/journal/apl/102/22/10.1063/1.4809603&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Reversible luminance decay in polymer light-emitting electrochemical cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/22/10.1063/1.4809603
10.1063/1.4809603
SEARCH_EXPAND_ITEM