1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Reversible luminance decay in polymer light-emitting electrochemical cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/22/10.1063/1.4809603
1.
1. Q. B. Pei, G. Yu, C. Zhang, Y. Yang, and A. J. Heeger, Science 269(5227), 10861088 (1995).
http://dx.doi.org/10.1126/science.269.5227.1086
2.
2. Q. B. Pei, Y. Yang, G. Yu, C. Zhang, and A. J. Heeger, J. Am. Chem. Soc. 118(16), 39223929 (1996).
http://dx.doi.org/10.1021/ja953695q
3.
3. J. Gao and J. Dane, Appl. Phys. Lett. 83(15), 30273029 (2003).
http://dx.doi.org/10.1063/1.1618948
4.
4. J. Gao and J. Dane, Appl. Phys. Lett. 84(15), 27782780 (2004).
http://dx.doi.org/10.1063/1.1702126
5.
5. P. Matyba, K. Maturova, M. Kemerink, N. D. Robinson, and L. Edman, Nature Mater. 8(8), 672676 (2009).
http://dx.doi.org/10.1038/nmat2478
6.
6. D. B. Rodovsky, O. G. Reid, L. S. C. Pingree, and D. S. Ginger, ACS Nano 4(5), 26732680 (2010).
http://dx.doi.org/10.1021/nn1003315
7.
7. Y. Hu and J. Gao, J. Am. Chem. Soc. 133(7), 22272231 (2011).
http://dx.doi.org/10.1021/ja1093106
8.
8. Y. F. Hu, B. Dorin, F. Teng, and J. Gao, Org. Electron. 13(3), 361365 (2012).
http://dx.doi.org/10.1016/j.orgel.2011.12.010
9.
9. A. Inayeh, B. Dorin, and J. Gao, Appl. Phys. Lett. 101(25), 253305 (2012).
http://dx.doi.org/10.1063/1.4773235
10.
10. D. Hohertz and J. Gao, Adv. Mater. 20(17), 32983302 (2008).
http://dx.doi.org/10.1002/adma.200800068
11.
11. J. H. Shin, P. Matyba, N. D. Robinson, and L. Edman, Electrochim. Acta 52(23), 64566462 (2007).
http://dx.doi.org/10.1016/j.electacta.2007.04.068
12.
12. X. Li, J. Gao, and G. Liu, Org. Electron. 14, 14411446 (2013).
http://dx.doi.org/10.1016/j.orgel.2013.03.015
13.
13. L. Edman, D. Moses, and A. J. Heeger, Synth. Met. 138(3), 441446 (2003).
http://dx.doi.org/10.1016/S0379-6779(02)00470-8
14.
14. Y. Cao, Q. B. Pei, M. R. Andersson, G. Yu, and A. J. Heeger, J. Electrochem. Soc. 144(12), L317L320 (1997).
http://dx.doi.org/10.1149/1.1838145
15.
15. Y. Cao, G. Yu, A. J. Heeger, and C. Y. Yang, Appl. Phys. Lett. 68(23), 32183220 (1996).
http://dx.doi.org/10.1063/1.116442
16.
16. A. L. Holt, J. M. Leger, and S. A. Carter, J. Chem. Phys. 123, 044704 (2005).
http://dx.doi.org/10.1063/1.1949188
17.
17. Y. Kervella, M. Armand, and O. Stephan, J. Electrochem. Soc. 148(11), H155H160 (2001).
http://dx.doi.org/10.1149/1.1404971
18.
18. T. Wagberg, P. R. Hania, N. D. Robinson, J. H. Shin, P. Matyba, and L. Edman, Adv. Mater. 20(9), 17441749 (2008).
http://dx.doi.org/10.1002/adma.200702595
19.
19. S. Tang and L. Edman, J. Phys. Chem. Lett. 1(18), 27272732 (2010).
http://dx.doi.org/10.1021/jz1010797
20.
20. Y. Shao, G. C. Bazan, and A. J. Heeger, Adv. Mater. 19(3), 365370 (2007).
http://dx.doi.org/10.1002/adma.200602087
21.
21. Y. Shao, X. Gong, A. J. Heeger, M. Liu, and A. K. Y. Jen, Adv. Mater. 21(19), 19721975 (2009).
http://dx.doi.org/10.1002/adma.200803698
22.
22. J. F. Fang, P. Matyba, and L. Edman, Adv. Funct. Mater. 19(16), 26712676 (2009).
http://dx.doi.org/10.1002/adfm.200900479
23.
23. A. Sandstrom, P. Matyba, and L. Edman, Appl. Phys. Lett. 96(5), 053303 (2010).
http://dx.doi.org/10.1063/1.3299018
24.
24. Z. Yu, M. Wang, G. Lei, J. Liu, L. Li, and Q. Pei, J. Phys. Chem. Lett. 2(5), 367372 (2011).
http://dx.doi.org/10.1021/jz200071b
25.
25. Y. Hu, C. Tracy, and J. Gao, Appl. Phys. Lett. 88(12), 123507 (2006).
http://dx.doi.org/10.1063/1.2187408
26.
26. Y. G. Zhang, Y. F. Hu, and J. Gao, Appl. Phys. Lett. 88(16), 163507 (2006).
http://dx.doi.org/10.1063/1.2195967
27.
27. S. Alem and J. Gao, Org. Electron. 9(3), 347354 (2008).
http://dx.doi.org/10.1016/j.orgel.2007.12.006
28.
28. S. B. Meier, D. Hartmann, D. Tordera, H. J. Bolink, A. Winnacker, and W. Sarfert, Phys. Chem. Chem. Phys. 14(31), 1088610890 (2012).
http://dx.doi.org/10.1039/c2cp41323j
29.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/22/10.1063/1.4809603
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Time evolution of luminance and driving voltage of a ITO/MEH-PPV:PEO:LiTf/Al sandwich LEC (A1) operated at a constant current of 5 mA (42 mA/cm). The active layer thickness of A1 was 142 ± 3 nm. The inset shows the device characteristics of the A1 during the first 5 h.

Image of FIG. 2.

Click to view

FIG. 2.

Time evolution of luminance and driving voltage of a ITO/MEH-PPV:PEO:LiTf/Al sandwich LEC (B1) operated at a constant current of 40 mA (333 mA/cm). The photographs (a)–(f) are the images of an identical device (B2) operated under the same conditions taken at various times as indicated by the red dots on the luminance vs. time curve. The active layer thickness of B1 and B2 was 756 ± 25 nm. The exposure of the camera was set to f = 4.8 and shutter speed = 1/50 s for all of the images.

Image of FIG. 3.

Click to view

FIG. 3.

Time evolution of luminance and driving voltage of an ITO/MEH-PPV:PEO:LiTf/Al sandwich LEC (C4) operated at a constant current of 20 mA (167 mA/cm). The active layer thickness of C4 was 142 ± 3 nm. The device was tested multiple times. The delay and heating applied between consecutive runs are indicated on the graph. The first run (run 1) was carried out after the device had been stored in the glove box for 26 days at 25 °C.

Image of FIG. 4.

Click to view

FIG. 4.

Time evolution of luminance and driving voltage of an ITO/MEH-PPV:PEO:LiTf/Al sandwich LEC (C3) operated at a constant current of 20 mA (167 mA/cm). The active layer thickness of C3 was 142 ± 3 nm. The device was tested multiple times after being stored for 17 days since the last run at 167 mA/cm. The delay and heating applied between consecutive runs are indicated on the graph. Before run 1, C3 had been operated at 20 mA for a total of 125 h and underwent all heating cycles applied to C4. The images to the right are: fluorescence image of C3 and C4 after run 7 before the heating cycle commenced (TOP); fluorescence image of C3 and C4 after run 7 and 7 h of heating at 60 °C (MIDDLE); Electroluminescence image of C3 after run 8 and 7 h of heating at 60 °C (BOTTOM).

Loading

Article metrics loading...

/content/aip/journal/apl/102/22/10.1063/1.4809603
2013-06-06
2014-04-24

Abstract

The luminance decay of generic sandwich polymer light-emitting electrochemical cells has been investigated. Under constant current operation, the apparent luminance decay is caused by both the formation of non-emitting black spots, which decreases the active emitting area, and the electrochemical doping, which quenches the luminescence of the light-emitting electrochemical cell film. The latter's effect on luminance, however, can be mostly reversed by letting the electrochemical doping relax. A dramatic recovery of luminance is observed when the device is stored without voltage bias and/or moderately heated between consecutive operations. The decay/recovery cycle can be repeated multiple times with little loss of luminance despite the high current density (167 mA/cm) applied. At lower current density, a freshly made device loses less than 10% of its peak luminance after over 200 h of continuous operation. Polymer light-emitting electrochemical cells therefore possess vastly longer operating lifetime if allowed to recover from the effect of reversible doping.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/22/1.4809603.html;jsessionid=b52m5c4ujbq15.x-aip-live-06?itemId=/content/aip/journal/apl/102/22/10.1063/1.4809603&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Reversible luminance decay in polymer light-emitting electrochemical cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/22/10.1063/1.4809603
10.1063/1.4809603
SEARCH_EXPAND_ITEM