1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/23/10.1063/1.4810907
1.
1. Y. Liu, X. Chen, and J. H. Xin, J. Mater. Chem. 19, 5602 (2009).
http://dx.doi.org/10.1039/b822168e
2.
2. G. Y. Lai, High-Temperature Corrosion and Materials Applications (ASM International, Ohio, 2007), pp. 321334.
3.
3. D. Quéré, Annu. Rev. Mater. Res. 38, 71 (2008).
http://dx.doi.org/10.1146/annurev.matsci.38.060407.132434
4.
4. L. Bocquet and E. Lauga, Nature 10, 334 (2011).
http://dx.doi.org/10.1038/nmat2994
5.
5. E. G. Shafrin and W. A. Zisman, Constitutive Relations in the Wetting of Low-Energy Surfaces and the Theory of Retraction Method of Preparing Monolayers (Naval Research Lab., Washington D.C., 1959).
6.
6. A. Tuteja, W. Choi, J. M. Mabry, G. H. McKinley, and R. E. Cohen, Proc. Natl. Acad. Sci. U.S.A. 105, 18200 (2008).
http://dx.doi.org/10.1073/pnas.0804872105
7.
7. A. Ahuja, J. A. Taylor, V. Lifton, A. A. Sidorenko, T. R. Salamon, E. J. Lobaton, P. Kolodner, and T. N. Krupenkin, Langmuir 24, 9 (2008).
http://dx.doi.org/10.1021/la702327z
8.
8. H. Li, X. Wang, Y. Song, Y. Liu, Q. Li, L. Jiang, and D. Zhu, Angew. Chem. 40, 1743 (2001).
http://dx.doi.org/10.1002/1521-3773(20010504)40:9<1743::AID-ANIE17430>3.0.CO;2-#
9.
9. A. Grigoryev, I. Tokarev, K. G. Kornev, I. Luzinov, and S. Minko, J. Am. Chem. Soc. 134, 12916 (2012).
http://dx.doi.org/10.1021/ja305348n
10.
10. S. Pechook and B. Pokroy, Adv. Funct. Mater. 22, 745 (2012).
http://dx.doi.org/10.1002/adfm.201101721
11.
11. T. Zhang, J. Wang, L. Chen, J. Zhai, Y. Song, and L. Jiang, Angew. Chem. 50, 5311 (2011).
http://dx.doi.org/10.1002/anie.201007262
12.
12. X. Deng, L. Mammen, H.-J. Butt, and D. Vollmer, Science 335, 67 (2012).
http://dx.doi.org/10.1126/science.1207115
13.
13. M. Guo, B. Ding, X. Li, J. Yu, and M. Wang, J. Phys. Chem. C 114, 916 (2010).
http://dx.doi.org/10.1021/jp909672r
14.
14. G. Azimi, R. Dhiman, H.-M. Kwon, A. T. Paxson, and K. K. Varanasi, Nature Mater. 12, 1 (2013).
http://dx.doi.org/10.1038/nmat3545
15.
15. C. Urata, B. Masheder, D. F. Cheng, and A. Hozumi, Chem. Commun. 49, 3318 (2013).
http://dx.doi.org/10.1039/c3cc41087k
16.
16. J. J. Jasper, J. Phys. Chem. Ref. Data 1, 841 (1972).
http://dx.doi.org/10.1063/1.3253106
17.
17. J. Escobedo and G. A. Mansoori, AICHE J. 42, 1425 (1996).
http://dx.doi.org/10.1002/aic.690420523
18.
18. T.-S. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, and J. Aizenberg, Nature 477, 443 (2011).
http://dx.doi.org/10.1038/nature10447
19.
19. P. Kim, T. S. Wong, J. Alvarenga, M. J. Kreder, W. E. Ardono-Martinez, and J. Aizenberg, ACS Nano 6, 6569 (2012).
http://dx.doi.org/10.1021/nn302310q
20.
20. A. K. Epstein, T.-S. Wong, R. A. Belisle, E. M. Boggs, and J. Aizenberg, Proc. Natl. Acad. Sci. U.S.A. 109, 13182 (2012).
http://dx.doi.org/10.1073/pnas.1201973109
21.
21. P. Kim, M. J. Kreder, J. Alvarenga, and J. Aizenberg, Nano Lett. 13, 1793 (2013).
http://dx.doi.org/10.1021/nl4003969
22.
22. A. Lafuma and D. Quéré, Europhys. Lett. 96, 56001 (2011).
http://dx.doi.org/10.1209/0295-5075/96/56001
23.
23. J. D. Smith, R. Dhiman, S. Anand, E. Reza-Garduno, R. E. Cohen, G. H. McKinley, and K. K. Varansi, Soft Matter 9, 1772 (2013).
http://dx.doi.org/10.1039/c2sm27032c
24.
24. B. Pokroy, A. K. Epstein, M. C. M. Persson-Gulda, and J. Aizenberg, Adv. Mater. 21, 463 (2009).
http://dx.doi.org/10.1002/adma.200801432
25.
25. N. B. Vargaftik, B. N. Volkov, and L. D. Voljak, J. Phys. Chem. Ref. Data 12, 817 (1983).
http://dx.doi.org/10.1063/1.555688
26.
26. G. Winchester and R. K. Reber, Ind. Eng. Chem. 21, 1093 (1929).
http://dx.doi.org/10.1021/ie50239a030
27.
27. S. Ross, Variation With Temperature of Surface Tension of Lubricating Oils (National Advisory Committee for Aeronautics, Washington, 1950).
28.
28. J. Seiwert, M. Maleki, C. Clanet, and D. Quéré, Europhys. Lett. 94, 16002 (2011).
http://dx.doi.org/10.1209/0295-5075/94/16002
29.
29. J. Seiwart, M. Maleki, and D. Quéré, J. Fluid Mech. 669, 55 (2011).
http://dx.doi.org/10.1017/S0022112010005951
30.
30. K.-H. Chu, R. Enright, and E. N. Wang, Appl. Phys. Lett. 100, 241603 (2012).
http://dx.doi.org/10.1063/1.4724190
31.
31. N. Miljkovic, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack, and E. N. Wang, Nano Lett. 13, 179 (2013).
http://dx.doi.org/10.1021/nl303835d
32.
32. See supplementary material at http://dx.doi.org/10.1063/1.4810907 for details about the effect of using different lubricants on SLIPS lifetime. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/23/10.1063/1.4810907
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic of superhydrophobic (SH-) surface (left) and SLIPS (right): For a SH-surface, there is a transition from non-wetting to wetting with increasing . SLIPS, on the other hand, remain liquid-repellent at high . (b) Hot water ( = 95 °C) stained with methylene blue effectively wets SH-surface, while the same surface infused with Krytox 100 remains dry and stain-free. (c) Plot of CAH on SH-surface (black squares) and SLIPS (red circles) as a function of surface tension for water and water-EtOH solutions of increasing EtOh concentrations (2, 5, 6, 7, 10, and 20% wt.) (enhanced online). [URL: http://dx.doi.org/10.1063/1.4810907.1]doi: 10.1063/1.4810907.1.

Image of FIG. 2.

Click to view

FIG. 2.

Images at time t = 0–1.4 s of two 50 l crude oil droplets on 10° incline placed next to each other on a hot plate, one pinned to a Teflon membrane and the other sliding at a speed of 1.5 cm/s on the same membrane infused with Krytox 105. At t = 1.4 s, crude oil started to boil. Inset: SEM ofthe Teflon membrane (scale bar 1 m) (enhanced online). [URL: http://dx.doi.org/10.1063/1.4810907.2]doi: 10.1063/1.4810907.2.

Image of FIG. 3.

Click to view

FIG. 3.

Characterization of lubricant viscosity and stability at high temperatures and the resulting velocity of the moving liquid droplets. (a) Velocities of 20 l droplets of crude oil moving down a Teflon membrane infused with perfluorinated Krytox oils 100, 103, and 105 (K-100, 103, and 105) inclined at 5° for temperatures  = 20–200 °C. Vertical dashed lines denote the maximum operating temperature for the different Krytox oils. (b) Viscosities of the corresponding Krytox oils, , , and as a function of increasing . For a fixed ,  ≈ 10  ≈ 100 . (c) Thermogravimetric analysis of Krytox oils demonstrates that the rate of evaporation peaks at increasing for higher index number. Solid lines represent fractional mass left, while dashed lines represent the rate of fractional mass loss.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Time-lapsed image (total time-lag Δt = 0.4 s) of 20 l water droplets down a 50° incline for Teflon membrane infused with lubricants with increasing viscosity: (left to right) perfluoro-octane, FC-770, Krytox oils 100, 103, 105, and 107. (b) Log-log plot showing dependence of droplet velocity on lubricant viscosity. (c) Distance traveled by the water droplet with time on the perfluoro-octane-infused surface. Water did not reach terminal velocity and instead accelerated at constant  = 1.15 m/s (enhanced online). [URL: http://dx.doi.org/10.1063/1.4810907.3]doi: 10.1063/1.4810907.3.

Image of FIG. 5.

Click to view

FIG. 5.

Infra-red image of a 20 l water droplet on a superhydrophobic surface (left) and SLIPS (right) taken normal to the surface. Inset: SEM of the solid substrate with a hexagonal array of posts (diameter  = 1 m, height  = 10 m, and pitch  = 4 m) used in the experiment. Scale bar 5 m.

video/mp4,video/x-flv,video/flv,audio.mp3,audio.mpeg

Multimedia

The following multimedia file is available:
The following multimedia file is available:
The following multimedia file is available:
Loading

Article metrics loading...

/content/aip/journal/apl/102/23/10.1063/1.4810907
2013-06-12
2014-04-16

Abstract

Omniphobic surfaces that can repel fluids at temperatures higher than 100 °C are rare. Most state-of-the-art liquid-repellent materials are based on the lotus effect, where a thin air layer is maintained throughout micro/nanotextures leading to high mobility of liquids. However, such behavior eventually fails at elevated temperatures when the surface tension of test liquids decreases significantly. Here, we demonstrate a class of lubricant-infused structured surfaces that can maintain a robust omniphobic state even for low-surface-tension liquids at temperatures up to at least 200 °C. We also demonstrate how liquid mobility on such surfaces can be tuned by a factor of 1000.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/23/1.4810907.html;jsessionid=3cvm64209sacf.x-aip-live-02?itemId=/content/aip/journal/apl/102/23/10.1063/1.4810907&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/23/10.1063/1.4810907
10.1063/1.4810907
SEARCH_EXPAND_ITEM