1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
A flexible high potential printed battery for powering printed electronics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/23/10.1063/1.4810974
1.
1. H. Klauk, Chem. Soc. Rev. 39, 2643 (2010).
http://dx.doi.org/10.1039/b909902f
2.
2. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14(2), 99 (2002).
http://dx.doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
3.
3. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, Science 290, 2123 (2000);
http://dx.doi.org/10.1126/science.290.5499.2123
3. H. Kang, R. Kitsomboonloha, J. Jang, and V. Subramanian, Adv. Mater. 24, 3065 (2012).
http://dx.doi.org/10.1002/adma.201200924
4.
4. J. A. Rogers, T. Someya, and Y. Huang, Science 327, 1603 (2010).
http://dx.doi.org/10.1126/science.1182383
5.
5. A. C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnary, and A. Salleo, Chem. Rev. 110(1), 3 (2010).
http://dx.doi.org/10.1021/cr900150b
6.
6. V. Subramanian, J. M. J. Frechet, P. C. Chang, D. C. Huang, J. B. Lee, S. E. Molesa, A. R. Murphy, D. R. Redinger, and S. K. Volkman, Proc. IEEE 93(7), 1330 (2005).
http://dx.doi.org/10.1109/JPROC.2005.850305
7.
7. P. Kopola, M. Tuomikoski, R. Suhonen, and A. Maaninen, Thin Solid Films 517, 5757 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.03.209
8.
8. T. N. Ng, B. Russo, B. Krusor, R. Kist, and A. C. Arias, Org. Electron. 12, 2012 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.08.019
9.
9. A. C. Arias, S. E. Ready, R. Lujan, W. S. Wong, K. E. Paul, A. Salleo, M. L. Chabinyc, R. Apte, and R. A. Street, Appl. Phys. Lett. 85(15), 3304 (2004).
http://dx.doi.org/10.1063/1.1801673
10.
10. J. M. Ding, A. d. l. F. Vornbrock, C. Ting, and V. Subramanian, Sol. Energy Mater. Sol. Cells 93, 459 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.12.003
11.
11. N. Singh, C. Galande, A. Miranda, A. Mathkar, W. Gao, A. L. M. Reddy, A. Vlad, and P. M. Ajayan, Sci. Rep. 2(481), 1 (2012);
http://dx.doi.org/10.1038/srep00481
11. C. Meng, C. Liu, L. Chen, C. Hu, and S. Fan, Nano Lett. 10, 4025 (2010).
http://dx.doi.org/10.1021/nl1019672
12.
12. V. L. Pushparaj, M. M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R. J. Linhardt, O. Nalamasu, and P. M. Ajayan, Proc. Natl. Acad. Sci. U.S.A. 104(34), 13574 (2007).
http://dx.doi.org/10.1073/pnas.0706508104
13.
13. M. Peckerar, Z. Dilli, M. Dornajafi, N. Goldsman, Y. Ngu, R. B. Proctor, B. J. Krupsaw, and D. A. Lowy, Energy Environ. Sci. 4, 1807 (2011);
http://dx.doi.org/10.1039/c1ee01075a
13. H. Nishide and K. Oyaizu, Science 319, 737 (2008).
http://dx.doi.org/10.1126/science.1151831
14.
14. S.-H. Lee, P. Liu, C. E. Tracy, and D. K. Benson, Electrochem. Solid-State Lett. 2(9), 425 (1999).
http://dx.doi.org/10.1149/1.1390859
15.
15. P. Kritzera and J. A. Cook, J. Electrochem. Soc. 154(4), A481 (2007).
http://dx.doi.org/10.1149/1.2711064
16.
16. G. Kettlgruber, M. Kaltenbrunner, C. M. Siket, R. Moser, I. M. Graz, R. Schodiauer, and S. Bauer, J. Mater. Chem. A 1, 5505 (2013);
http://dx.doi.org/10.1039/c3ta00019b
16. M. Kaltenbrunner, G. Kettlgruber, C. Siket, R. Schwodiauer, and S. Bauer, Adv. Mater. 22, 2065 (2010).
http://dx.doi.org/10.1002/adma.200904068
17.
17. L. Hu, H. Wu, F. L. Mantia, Y. Yang, and Y. Cui, ACS Nano 4(10), 5843 (2010).
http://dx.doi.org/10.1021/nn1018158
18.
18. L. Hu, M. Pasta, F. L. Mantia, L. Cui, S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han, and Y. Cui, Nano Lett. 10, 708 (2010).
http://dx.doi.org/10.1021/nl903949m
19.
19. L. Hu, J. W. Choi, Y. Yang, S. Jeong, F. L. Mantia, L. F. Cui, and Y. Cui, Proc. Natl. Acad. Sci. U.S.A. 106(51), 21490 (2009).
http://dx.doi.org/10.1073/pnas.0908858106
20.
20. C. C. Ho, J. W. Evans, and P. K. Wright, J. Micromech. Microeng. 20, 104009 (2010).
http://dx.doi.org/10.1088/0960-1317/20/10/104009
21.
21. P. Hiralal, S. Imalzumi, H. E. Unalan, H. Matsumoto, M. Minagawa, M. Rouvala, A. Tanloka, and G. A. J. Amaratunga, ACS Nano 4(5), 2730 (2010).
http://dx.doi.org/10.1021/nn901391q
22.
22. A. M. Gaikwad, A. M. Zamarayeva, J. Rousseau, H. Chu, I. Derin, and D. A. Steingart, Adv. Mater. 24(37), 5071 (2012).
http://dx.doi.org/10.1002/adma.201201329
23.
23. A. M. Gaikwad, J. W. Gallaway, D. Desai, and D. A. Steingart, J. Electrochem. Soc. 158(2), A154 (2011).
http://dx.doi.org/10.1149/1.3525274
24.
24. A. M. Gaikwad, H. N. Chu, R. Qeraj, A. M. Zamarayeva, and D. A. Steingart, Energy Technol. 1, 177 (2013).
http://dx.doi.org/10.1002/ente.201200027
25.
25. M. Koo, K. Park, S. H. Lee, M. Suh, D. Y. Jeon, J. W. Choi, K. Kang, and K. J. Lee, Nano Lett. 12(9), 4810 (2012).
http://dx.doi.org/10.1021/nl302254v
26.
26. K. T. Braama, S. K. Volkman, and V. Subramanian, J. Power Sources 199, 367 (2012).
http://dx.doi.org/10.1016/j.jpowsour.2011.09.076
27.
27. A. Gaikwad, G. L. Whiting, D. A. Steingart, and A. C. Arias, Adv. Mater. 23(29), 3251 (2011).
http://dx.doi.org/10.1002/adma.201100894
28.
28. J. B. Bates, N. J. Dudney, B. Neudecker, A. Ueda, and C. D. Evan, Solid State Ionics 135, 33 (2000).
http://dx.doi.org/10.1016/S0167-2738(00)00327-1
29.
29. S. Xu, Y. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, J. A. Fan, Y. Su, J. Su, H. Zhang, H. Cheng, B. Lu, C. Yu, C. Chuang, T. Kim, T. Song, K. Shigeta, S. Kang, C. Dagdeviren, I. Petrov, P. V. Braun, Y. Huang, U. Paik, and J. A. Rogers, Nature Commun. 4(1543), 1 (2013).
http://dx.doi.org/10.1038/ncomms2553
30.
30. M.-H. Yoon, A. Facchetti, and T. J. Marks, Proc. Natl. Acad. Sci. U.S.A. 102, 4678 (2005).
http://dx.doi.org/10.1073/pnas.0501027102
31.
31. M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schütz, S. Maisch, F. Effenberger, M. Brunnbauer, and F. Stellacci, Nature 431, 963 (2004).
http://dx.doi.org/10.1038/nature02987
32.
32. T. N. Ng, D. E. Schwartz, L. L. Lavery, G. L. Whiting, B. Russo, B. Krusor, J. Veres, P. Bröms, L. Herlogsson, N. Alam, O. Hagel, J. Nilsson, and C. Karlsson, Sci. Rep. 2, 585 (2012).
http://dx.doi.org/10.1038/srep00585
33.
33. T. N. Ng, S. Sambandan, R. A. Lujan, A. C. Arias, C. Newman, H. Yan, and A. Fachetti, Appl. Phys. Lett. 94(23), 233307 (2009).
http://dx.doi.org/10.1063/1.3153510
34.
34. Y. Xia, W. Zhang, M. Ha, J. H. Cho, M. J. Renn, C. H. Kim, and C. D. Frisbie, Adv. Func. Mater. 20(4), 587 (2010).
http://dx.doi.org/10.1002/adfm.200901845
35.
35. A. Kozawa and R. A. Powers, J. Electrochem. Soc. 113(9), 870 (1966).
http://dx.doi.org/10.1149/1.2424145
36.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/23/10.1063/1.4810974
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Diagram of 10 Zn-MnO cells, printed on a fibrous substrate. Printed silver electrodes serve as the current collectors and printed silver lines connect the individual cells to form a high potential battery. Amorphous fluoropolymer solution printed in-between the Zn and MnO electrodes segregates the electrolyte in individual cells. After the printing steps, the membrane is cut into two sheets (sheet A and sheet B). Each electrode in sheets A and B is soaked with KOH/ZnO electrolyte and stacked together to complete the battery. (b) Diagram of the cross-section of the battery with sheets A and B stacked together. (c) Optical image of sheets A and B after printing the zinc/MnO electrodes and the silver current collector and interconnects (scale bar = 2 cm).

Image of FIG. 2.

Click to view

FIG. 2.

SEM micrograph of (a) the fibrous substrate, (b) MnO electrode, and (c) zinc electrode printed on the fibrous substrate. (d) SEM micrograph of the silver current collector. Cross-sectional view of the (e) MnO and (f) zinc electrodes printed on the fibrous substrate with a silver current collector, respectively. (The sample is at an inclination of 60°.)

Image of FIG. 3.

Click to view

FIG. 3.

(a) Discharge curve of the battery through a 100 kΩ resistor. (b) Typical EIS curve of an individual cell at frequencies ranging from 100 kHz to 10 Hz with an amplitude of 10 mV. (c) Polarization curve of the battery at a scan rate of 50 mV/s.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Cross-sectional schematic of the printed complementary inverters. (b) Circuit diagram of the 5-stage ring oscillator with output buffer. (c) Optical image of the printed 5-stage ring oscillator (scale bar = 1 mm). (d) Output from the printed 5-stage ring oscillator when powered with a 14 V printed battery (blue line: oscillator output, red line: battery output).

Loading

Article metrics loading...

/content/aip/journal/apl/102/23/10.1063/1.4810974
2013-06-12
2014-04-16

Abstract

Mechanically flexible arrays of alkaline electrochemical cells fabricated using stencil printing onto fibrous substrates are shown to provide the necessary performance characteristics for driving ink-jet printed circuits. Due to the dimensions and material set currently required for reliable low-temperature print processing of electronic devices, a battery potential greater than that sourced by single cells is typically needed. The developed battery is a series interconnected array of 10 low resistance Zn-MnO alkaline cells, giving an open circuit potential of 14 V. This flexible battery is used to power an ink-jet printed 5-stage complementary ring oscillator based on organic semiconductors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/23/1.4810974.html;jsessionid=1opgbcfbxprm6.x-aip-live-01?itemId=/content/aip/journal/apl/102/23/10.1063/1.4810974&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A flexible high potential printed battery for powering printed electronics
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/23/10.1063/1.4810974
10.1063/1.4810974
SEARCH_EXPAND_ITEM