1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Improved electron injection and transport by use of baking soda as a low-cost, air-stable, n-dopant for solution-processed phosphorescent organic light-emitting diodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/23/10.1063/1.4811087
1.
1. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
http://dx.doi.org/10.1063/1.98799
2.
2. C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys., Part 2 27, L269 (1988).
http://dx.doi.org/10.1143/JJAP.27.L269
3.
3. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature 395, 151 (1998).
http://dx.doi.org/10.1038/25954
4.
4. A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, Chem. Mater. 16, 4556 (2004).
http://dx.doi.org/10.1021/cm049473l
5.
5. K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, Chem. Rev. 107, 1233 (2007).
http://dx.doi.org/10.1021/cr050156n
6.
6. J. Kido and T. Matsumoto, Appl. Phys. Lett. 73, 2866 (1998).
http://dx.doi.org/10.1063/1.122612
7.
7. C. K. Chan, F. Amy, Q. Zhang, S. Barlow, S. Marder, and A. Kahn, Chem. Phys. Lett. 431, 67 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.09.034
8.
8. C. J. Bloom, C. M. Elliott, P. G. Schroeder, C. B. France, and B. A. Parkinson, J. Phys. Chem. B 107, 2933 (2003).
http://dx.doi.org/10.1021/jp026865b
9.
9. C.-I. Wu, C.-T. Lin, Y.-H. Chen, M.-H. Chen, Y.-J. Lu, and C.-C. Wu, Appl. Phys. Lett. 88, 152104 (2006).
http://dx.doi.org/10.1063/1.2192982
10.
10. Y. Cai, H. X. Wei, J. Li, Q. Y. Bao, X. Zhao, S. T. Lee, Y. Q. Li, and J. X. Tang, Appl. Phys. Lett. 98, 113304 (2011).
http://dx.doi.org/10.1063/1.3567526
11.
11. Y. Vaynzof, D. Kabra, L. L. Chua, and R. H. Friend, Appl. Phys. Lett. 98, 113306 (2011).
http://dx.doi.org/10.1063/1.3564903
12.
12. P.-C. Kao, J.-H. Lin, J.-Y. Wang, C.-H. Yang, and S.-H. Chen, J. Appl. Phys. 109, 094505 (2011).
http://dx.doi.org/10.1063/1.3585767
13.
13. K. R. Choudhury, J.-H. Yoon, and F. So, Adv. Mater. 20, 1456 (2008).
http://dx.doi.org/10.1002/adma.200701657
14.
14. K. S. Yook, S. O. Jeon, S.-Y. Min, J. Y. Lee, H.-J. Yang, T. Noh, S.-K. Kang, and T.-W. Lee, Adv. Funct. Mater. 20, 1797 (2010).
http://dx.doi.org/10.1002/adfm.201000137
15.
15. K. S. Yook, S. O. Jeon, C. W. Joo, J. Y. Lee, T.-W. Lee, T. Noh, H.-J. Yang, and S.-K. Kang, Synth. Met. 159, 1664 (2009).
http://dx.doi.org/10.1016/j.synthmet.2009.05.006
16.
16. J. H. Wemken, R. Krause, T. Mikolajick, and G. Schmid, J. Appl. Phys. 111, 074502 (2012).
http://dx.doi.org/10.1063/1.3699008
17.
17. C. Diez, T. C. G. Reusch, E. Lang, T. Dobbertin, and W. Brutting, J. Appl. Phys. 111, 103107 (2012).
http://dx.doi.org/10.1063/1.4720064
18.
18. S. Scholz, B. Lussem, and K. Leo, Appl. Phys. Lett. 95, 183309 (2009).
http://dx.doi.org/10.1063/1.3257380
19.
19. G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, Appl. Phys. Lett. 85, 3911 (2004).
http://dx.doi.org/10.1063/1.1812378
20.
20. D.-S. Leem, J.-H. Lee, J.-J. Kim, and J.-W. Kang, Appl. Phys. Lett. 93, 103304 (2008).
http://dx.doi.org/10.1063/1.2979706
21.
21. A. C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay, and A. Salleo, Chem. Rev. 110, 3 (2010).
http://dx.doi.org/10.1021/cr900150b
22.
22. T. Earmme, E. Ahmed, and S. A. Jenekhe, Adv. Mater. 22, 4744 (2010).
http://dx.doi.org/10.1002/adma.201001585
23.
23. E. Ahmed, T. Earmme, and S. A. Jenekhe, Adv. Funct. Mater. 21, 3889 (2011).
http://dx.doi.org/10.1002/adfm.201100848
24.
24. T. Earmme and S. A. Jenekhe, J. Mater. Chem. 22, 4660 (2012).
http://dx.doi.org/10.1039/c2jm14347j
25.
25. T. Earmme and S. A. Jenekhe, Adv. Funct. Mater. 22, 5126 (2012).
http://dx.doi.org/10.1002/adfm.201201366
26.
26. B. A. Gregg, S.-G. Chen, and H. M. Branz, Appl. Phys. Lett. 84, 1707 (2004).
http://dx.doi.org/10.1063/1.1668326
27.
27. P. Wei, J. H. Oh, G. Dong, and Z. Bao, J. Am. Chem. Soc. 132, 8852 (2010).
http://dx.doi.org/10.1021/ja103173m
28.
28. T. Earmme, E. Ahmed, and S. A. Jenekhe, J. Phys. Chem. C 113, 18448 (2009).
http://dx.doi.org/10.1021/jp907913d
29.
29. E. Ahmed, T. Earmme, G. Ren, and S. A. Jenekhe, Chem. Mater. 22, 5786 (2010).
http://dx.doi.org/10.1021/cm102147n
30.
30. S.-J. Su, T. Chiba, T. Takeda, and J. Kido, Adv. Mater. 20, 2125 (2008).
http://dx.doi.org/10.1002/adma.200701730
31.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/23/10.1063/1.4811087
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Blue PhOLEDs with NaHCO-doped BPhen ETL: (a) Current density ()-voltage (); (b) luminance ()-voltage (); (c) luminous efficiency ()-luminance (); and (d) power efficiency ()-luminance () characteristics. Device structure: ITO/PEDOT:PSS(30 nm)/EML(70 nm)/solution-processed BPhen:NaHCO ETL(30 nm)/Al (100 nm); BPhen: NaHCO doped at 0.0–15.0 mol. % NaHCO

Image of FIG. 2.

Click to view

FIG. 2.

Current density ()-voltage () characteristics of BPhen doped at different molar concentrations of NaHCO.

Image of FIG. 3.

Click to view

FIG. 3.

Blue PhOLEDs with NaHCO-doped TmPyPB ETL: (a) Current density ()-voltage (); (b) luminance ()-voltage (); (c) luminous efficiency ()-luminance (); and (d) power efficiency ()-luminance () characteristics. Device structures: ITO/PEDOT:PSS(30 nm)/EML(70 nm)/TmPyPB:NaHCO ETL(30 nm)/Al (100 nm); TmPyPB ETL was undoped or doped with 10.0 mol. % NaHCO. The inset in (a) shows the plots on a semi-log scale.

Loading

Article metrics loading...

/content/aip/journal/apl/102/23/10.1063/1.4811087
2013-06-13
2014-04-16

Abstract

Sodium bicarbonate (baking soda, NaHCO) is found to be an efficient low-cost, air-stable, and environmentally friendly n-dopant for electron-transport layer (ETL) in solution-processed phosphorescent organic light-emitting diodes (PhOLEDs). A 2.0-fold enhancement in power efficiency of blue PhOLEDs is observed by use of NaHCO-doped 4,7-diphenyl-1,10-phenanthroline (BPhen) ETL. The bulk conductivity of NaHCO-doped BPhen film is increased by 5 orders of magnitude. Enhanced performance of PhOLEDs is similarly observed by use of NaHCO-doped 1,3,5-tris(-pyrid-3-yl-phenyl)benzene ETL. These results demonstrate that sodium bicarbonate is an effective n-dopant in organic electronics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/23/1.4811087.html;jsessionid=tj3fxc8fpbia.x-aip-live-01?itemId=/content/aip/journal/apl/102/23/10.1063/1.4811087&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Improved electron injection and transport by use of baking soda as a low-cost, air-stable, n-dopant for solution-processed phosphorescent organic light-emitting diodes
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/23/10.1063/1.4811087
10.1063/1.4811087
SEARCH_EXPAND_ITEM