1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Cesium-doped zinc oxide as electron selective contact in inverted organic photovoltaics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/23/10.1063/1.4811088
1.
1. F. C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.10.004
2.
2. R. Søndergaard, M. Helgesen, M. Jørgensen, and F. C. Krebs, Adv. Energy Mater. 1, 68 (2011).
http://dx.doi.org/10.1002/aenm.201000007
3.
3. M. M. Voigt, R. C. I. Mackenzie, C. P. Yau, P. Atienzar, J. Dane, P. E. Keivanidis, D. D. C. Bradley, and J. Nelson, Sol. Energy Mater Sol. Cells 95, 731 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.10.013
4.
4. D. J. D. Moet, P. de Bruyn, and P. W. M. Blom, Appl. Phys. Lett. 96, 153504 (2010).
http://dx.doi.org/10.1063/1.3387863
5.
5. C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, and C. J. Brabec, Appl. Phys. Lett. 89, 233517 (2006).
http://dx.doi.org/10.1063/1.2402890
6.
6. A. Savva, F. Petraki, P. Elefteriou, L. Sygellou, M. Voigt, M. Giannouli, S. Kennou, J. Nelson, D. D. C. Bradley, C. J. Brabec, and S. A. Choulis, Adv. Energy Mater. 3, 391 (2013).
http://dx.doi.org/10.1002/aenm.201200317
7.
7. R. Steim, S. A. Choulis, P. Schilinsky, and C. J. Brabec, Appl. Phys. Lett. 92, 093303 (2008).
http://dx.doi.org/10.1063/1.2885724
8.
8. A. Manor, E. A. Katz, T. Tromholt, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 98, 491 (2012).
http://dx.doi.org/10.1016/j.solmat.2011.11.026
9.
9. T. Kuwabara, C. Tamai, Y. Omura, T. Yamaguchi, T. Taima, and K. Takahashi, Org. Electron. 14, 649 (2013).
http://dx.doi.org/10.1016/j.orgel.2012.11.013
10.
10. H. Oh, J. Krantz, I. Litzon, T. Stubhan, L. Pinna, and C. J. Brabec, Sol. Energy Mater. Sol. Cells 95, 2194 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.03.023
11.
11. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Appl. Phys. Lett. 89, 143517 (2006).
http://dx.doi.org/10.1063/1.2359579
12.
12. T. Stubhan, H. Oh, L. Pinna, J. Krantz, I. Litzov, and C. J. Brabec, Org. Electron. 12, 1539 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.05.027
13.
13. N. Li, T. Stubhan, D. Baran, J. Min, H. Wang, T. Ameri, and C. J. Brabec, Adv. Energy Mater. 3, 301 (2013).
http://dx.doi.org/10.1002/aenm.201200659
14.
14. J. Owen, M. S. Son, K.-H. Yoo, B. D. Ahn, and S. Y. Lee, Appl. Phys. Lett. 90, 033512 (2007).
http://dx.doi.org/10.1063/1.2432951
15.
15. T. Z. Oo, R. D. Chandra, N. Yantara, R. R. Prabhakar, L. H. Wong, N. Mathews, and S. G. Mhaisalkar, Org. Electron. 13, 870 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.01.011
16.
16. S. Ray, R. Das, and A. K. Barua, Sol. Energy Mater. Sol. Cells 74, 387 (2002).
http://dx.doi.org/10.1016/S0927-0248(02)00128-9
17.
17. M. J. Alam and D. C. Cameron, J. Vac. Sci. Technol. A 19, 1642 (2001).
http://dx.doi.org/10.1116/1.1340659
18.
18. A. Aprilia, P. Wulandari, V. Suendo, Herman, R. Hidayat, A. Fujii, and M. Ozaki, Sol. Energy Mater. Sol. Cells 111, 181 (2013).
http://dx.doi.org/10.1016/j.solmat.2012.12.033
19.
19. M.-H. Park, J.-H. Li, A. Kumar, G. Li, and Y. Yang, Adv. Funct. Mater. 19, 1241 (2009).
http://dx.doi.org/10.1002/adfm.200801639
20.
20. H.-H. Liao, L.-M. Chen, Z. Xu, G. Li, and Y. Yang, Appl. Phys. Lett. 92, 173303 (2008).
http://dx.doi.org/10.1063/1.2918983
21.
21. G. Cheng, W.-Y. Tong, K.-H. Low, and C.-M. Che, Sol. Energy Mater. Sol. Cells 103, 164 (2012).
http://dx.doi.org/10.1016/j.solmat.2012.04.022
22.
22. T. Xiao, W. Cui, M. Cai, W. Leung, J. W. Anderegg, J. Shinar, and R. Shinar, Org. Electron. 14, 267 (2013).
http://dx.doi.org/10.1016/j.orgel.2012.10.020
23.
23. A. Savva, M. Neophytou, C. Koutsides, K. Kalli, and S. A. Choulis, “ Synergetic effects of buffer layers processing additives to enhanced hole carrier selectivity in inverted organic photovoltaics,” Org. Electron. (submitted).
24.
24. H. Wieber, Laboratory Notes on Electrical and Galvanometric Measurements (Elsevier, Amsterdam, 1979), p. 6.
25.
25. D. Y. Kwok and A. W. Neumann, Adv. Colloid Interface Sci. 81, 167 (1999).
http://dx.doi.org/10.1016/S0001-8686(98)00087-6
26.
26. P. Schilinsky and C. Waldauf, J. Appl. Phys. 95, 2816 (2004).
http://dx.doi.org/10.1063/1.1646435
27.
27. C. Waldauf, P. Schilinsky, J. Hauch, and C. J. Brabec, Thin Solid Films 451–452, 503 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.11.043
28.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/23/10.1063/1.4811088
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Relative energy diagram of inverted OPVs under study depicting the basic steps for electron and hole collection, after the creation and separation process of the exciton within the active blend. In addition a simplified process flow for the solution based electron selective contacts used in this study, ZnO and CZO.

Image of FIG. 2.

Click to view

FIG. 2.

Tapping mode 10 × 10 m atomic force microscopy images for (a)sol-gel derived ZnO and (b) sol-gel derived CZO. The insets represent tapping mode 2.5 × 2.5 m for each corresponding measurement.

Image of FIG. 3.

Click to view

FIG. 3.

Illuminated J/V characteristics of inverted OPVs under study. The inset of Fig. 3(a) demonstrates the series resistance (Rs) regime of the dark J/V characteristics for the inverted OPVs under study. (b) External quantum efficiency for the same inverted OPVs used in Fig. 3(a) by the inset.

Tables

Generic image for table

Click to view

Table I.

Synopsis of the major optoelectronic and surface properties values for the metal oxides used in this study.

Generic image for table

Click to view

Table II.

Photovoltaic parameters of the inverted OPVs under study, using different thickness ZnO and CZO as electron selective layers.

Loading

Article metrics loading...

/content/aip/journal/apl/102/23/10.1063/1.4811088
2013-06-11
2014-04-18

Abstract

Water based sol-gel processed Cesium-doped Zinc oxide (CZO) with low processing annealing temperature is introduced as an efficient electron selective contact in inverted Organic Photovoltaics (OPVs). The corresponding inverted OPVs not only demonstrate similar performance compared to the well-established sol-gel processed ZnO inverted devices but also maintain their functionality when thick layers of CZO, suitable for the up scaling scenario of OPVs have been used. The three orders of magnitude higher conductivity of CZO than ZnO in combination with the high transmittance above 80%, makes this doped oxide a suitable electron selective contact for the low-cost, roll-to-roll printing process of OPVs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/23/1.4811088.html;jsessionid=yb30jcsdifau.x-aip-live-06?itemId=/content/aip/journal/apl/102/23/10.1063/1.4811088&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Cesium-doped zinc oxide as electron selective contact in inverted organic photovoltaics
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/23/10.1063/1.4811088
10.1063/1.4811088
SEARCH_EXPAND_ITEM