1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Contact properties of high-mobility, air-stable, low-voltage organic n-channel thin-film transistors based on a naphthalene tetracarboxylic diimide
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/23/10.1063/1.4811127
1.
1. S. C. B. Mannsfeld, B. C. K. Tee, R. M. Stoltenberg, C. V. H. H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, Nature Mater. 9, 859 (2010).
http://dx.doi.org/10.1038/nmat2834
2.
2. T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, and T. Sakurai, Proc. Natl. Acad. Sci. U.S.A. 102, 12321 (2005).
http://dx.doi.org/10.1073/pnas.0502392102
3.
3. K. Myny, S. Steudel, S. Smout, P. Vicca, F. Furthner, B. van der Putten, A. K. Tripathi, G. H. Gelinck, J. Genoe, W. Dehaene, and P. Heremans, Org. Electron. 11, 1176 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.04.013
4.
4. I. Yagi, N. Hirai, Y. Miyamoto, M. Noda, A. Imaoka, N. Yoneya, K. Nomoto, J. Kasahara, A. Yumoto, and T. Urabe, J. Soc. Inf. Disp. 16, 15 (2008).
http://dx.doi.org/10.1889/1.2835023
5.
5. G. H. Gelinck, H. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. van der Putten, T. Geuns, M. Beenhakkers, J. Giesbers, B. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. van Rens, and D. M. de Leeuw, Nature Mater. 3, 106 (2004).
http://dx.doi.org/10.1038/nmat1061
6.
6. F. Ante, D. Kälblein, T. Zaki, U. Zschieschang, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, J. N. Burghartz, K. Kern, and H. Klauk, Small 8, 73 (2012).
http://dx.doi.org/10.1002/smll.201101677
7.
7. U. Zschieschang, M. J. Kang, K. Takimiya, T. Sekitani, T. Someya, T. W. Canzler, A. Werner, J. Blochwitz-Nimoth, and H. Klauk, J. Mater. Chem. 22, 4273 (2012).
http://dx.doi.org/10.1039/c1jm14917b
8.
8. D. Bode, K. Myny, B. Verreet, B. van der Putten, P. Bakalov, S. Steudel, S. Smout, P. Vicca, J. Genoe, and P. Heremans, Appl. Phys. Lett. 96, 133307 (2010).
http://dx.doi.org/10.1063/1.3373630
9.
9. M. Kitamura, Y. Kuzumoto, S. Aomori, and Y. Arakawa, Appl. Phys. Express 4, 051601 (2011).
http://dx.doi.org/10.1143/APEX.4.051601
10.
10. B. K. Crone, A. Dodabalapur, R. Sarpeshkar, R. W. Filas, Y. Y. Lin, Z. Bao, J. H. ONeill, W. Li, and H. E. Katz, J. Appl. Phys. 89, 5125 (2001).
http://dx.doi.org/10.1063/1.1362635
11.
11. M. M. Ling and Z. Bao, Org. Electron. 7, 568 (2006).
http://dx.doi.org/10.1016/j.orgel.2006.09.003
12.
12. H. E. Katz, J. Johnson, A. J. Lovinger, and W. Li, J. Am. Chem. Soc. 122, 7787 (2000).
http://dx.doi.org/10.1021/ja000870g
13.
13. B. A. Jones, M. J. Ahrens, M. H. Yoon, A. Facchetti, T. J. Marks, and M. R. Wasielewski, Angew. Chem. Int. Ed. 43, 6363 (2004).
http://dx.doi.org/10.1002/anie.200461324
14.
14. H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, and A. Facchetti, Nature 457, 679 (2009).
http://dx.doi.org/10.1038/nature07727
15.
15. Y. Zhao, C. Di, X. Gao, Y. Hu, Y. Guo, L. Zhang, Y. Liu, J. Wang, W. Hu, and D. Zhu, Adv. Mater. 23, 2448 (2011).
http://dx.doi.org/10.1002/adma.201004588
16.
16. J. H. Oh, S. L. Suraru, W. Y. Lee, M. Könemann, H. W. Höffken, C. Röger, R. Schmidt, Y. Chung, W. C. Chen, F. Würthner, and Z. Bao, Adv. Funct. Mater. 20, 2148 (2010).
http://dx.doi.org/10.1002/adfm.201000425
17.
17. M. Stolte, S. L. Suraru, F. Würthner, J. H. Oh, Z. Bao, J. Brill, M. Könemann, J. Qu, U. Zschieschang, and H. Klauk, Proc. SPIE 7778, 777804 (2010).
http://dx.doi.org/10.1117/12.859829
18.
18. U. Zschieschang, F. Ante, D. Kälblein, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, J. Blochwitz-Nimoth, and H. Klauk, Org. Electron. 12, 1370 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.04.018
19.
19. M. Marinkovic, D. Belaineh, V. Wagner, and D. Knipp, Adv. Mater. 24, 4005 (2012).
http://dx.doi.org/10.1002/adma.201201311
20.
20. D. Natali and M. Caironi, Adv. Mater. 24, 1357 (2012).
http://dx.doi.org/10.1002/adma.201104206
21.
21. D. Boudinet, G. L. Blevennec, C. Serbutoviez, J.-M. Verilhac, H. Yan, and G. Horowitz, J. Appl. Phys. 105, 084510 (2009).
http://dx.doi.org/10.1063/1.3110021
22.
22. C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J. L. Brédas, P. C. Ewbank, and K. R. Mann, Chem. Mater. 16, 4436 (2004).
http://dx.doi.org/10.1021/cm049391x
23.
23. T. Yamamoto and K. Takimiya, J. Am. Chem. Soc. 129, 2224 (2007).
http://dx.doi.org/10.1021/ja068429z
24.
24. P. A. Anderson, Phys. Rev. 115, 553 (1959).
http://dx.doi.org/10.1103/PhysRev.115.553
25.
25. H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).
http://dx.doi.org/10.1063/1.323539
26.
26. H. Peisert, M. Knupfer, and J. Fink, Appl. Phys. Lett. 81, 2400 (2002).
http://dx.doi.org/10.1063/1.1509472
27.
27. C. Shen and A. Kahn, J. Appl. Phys. 90, 4549 (2001).
http://dx.doi.org/10.1063/1.1406967
28.
28. H. H. Berger, J. Electrochem. Soc. 119, 507 (1972).
http://dx.doi.org/10.1149/1.2404240
29.
29. D. Schroder, Semiconductor Material and Device Characterization (Wiley, 2006).
30.
30. T. J. Richards and H. Sirringhaus, J. Appl. Phys. 102, 094510 (2007).
http://dx.doi.org/10.1063/1.2804288
31.
31. C. Tanase, E. J. Meijer, P. W. M. Blom, and D. M. De Leeuw, Org. Electron. 4, 33 (2003).
http://dx.doi.org/10.1016/S1566-1199(03)00006-5
32.
32. S. Luan and G. W. Neudeck, J. Appl. Phys. 72, 766 (1992).
http://dx.doi.org/10.1063/1.351809
33.
33. B. A. Jones, A. Facchetti, M. R. Wasielewski, and T. J. Marks, J. Am. Chem. Soc. 129, 15259 (2007).
http://dx.doi.org/10.1021/ja075242e
34.
34. F. De Angelis, M. Gaspari, A. Procopio, G. Cuda, and E. Di Fabrizio, Chem. Phys. Lett. 468, 193 (2009).
http://dx.doi.org/10.1016/j.cplett.2008.12.048
35.
35. K.-J. Baeg, S.-W. Jung, D. Khim, J. Kim, D.-Y. Kim, J. B. Koo, J. R. Quinn, A. Facchetti, I.-K. You, and Y.-Y. Noh, Org. Electron. 14, 1407 (2013).
http://dx.doi.org/10.1016/j.orgel.2012.12.022
36.
36. W. Smaal, C. Kjellander, Y. Jeong, A. Tripathi, B. van der Putten, A. Facchetti, H. Yan, J. Quinn, J. Anthony, K. Myny, W. Dehaene, and G. Gelinck, Org. Electron. 13, 1686 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.05.022
37.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/23/10.1063/1.4811127
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Chemical structure of NTCDI-Cl-(CHCF). (b) AFM image of a nominally 20-nm-thick vacuum-deposited NTCDI-Cl-(CHCF) film. (c) Height profile of the section marked in Fig. 1(b) .

Image of FIG. 2.

Click to view

FIG. 2.

Current-voltage characteristics of an organic n-channel TFT with a channel length of 1 m, measured under ambient conditions. (a) Transfer curve. (b) Output curve.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Effective field-effect mobility of TFTs with a contact length of 200 m as a function of the channel length at  = 0.1 V. The red line is a fit according to Eq. (1) . (b) Width-normalized total resistance as a function of the channel length for different gate overdrive voltages. All linear fit curves meet at a single point which defines a characteristic length l = 64 m and a characteristic width-normalized resistance kΩ cm.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Schematic of the source side of the TFT, illustrating the different resistances. (b) Intrinsic mobility (top) and transfer length (bottom) as a function of the gate overdrive voltage. (c) Width-normalized contact resistance (top) and contact resistivity (bottom) as a function of the inverse gate overdrive voltage. The red lines are linear fits.

Image of FIG. 5.

Click to view

FIG. 5.

(a) Evolution of TFT parameters during air exposure at a gate overdrive voltage of 1.6 V. Top: Intrinsic electron mobility. Bottom: Width-normalized contact resistance (black circles), contact resistivity (blue squares), and constant part of the contact resistivity (blue triangles). The errors are taken from the standard error of the linear fit of vs. . (b) Mass spectrum of a NTCDI-Cl-(CHCF) film after about 14 months in air. No oxidation products are visible. Inset: Magnification of the region where oxidation products would be expected.

Image of FIG. 6.

Click to view

FIG. 6.

(a) Statistics of the width-normalized contact resistance extracted from 8 samples fabricated under the same conditions. (b) Statistics of the intrinsic mobility for 8 samples. The mean value is (0.86 ± 0.23) cm/Vs.

Image of FIG. 7.

Click to view

FIG. 7.

(a) Stage delay of flexible 11-stage organic complementary ring oscillators based on NTCDI-Cl-(CHCF) (n-channel) and DNTT (p-channel) as a function of the supply voltage. The lines are guides to the eye. Inset: Oscillation frequency of the ring oscillators as a function of the supply voltage. The straight lines illustrate the linear relationship. (b) Output signal of the ring oscillator with a channel length of 1 m and a contact length of 5 m at a supply voltage of 2.6 V. Inset: Photograph of the complementary ring oscillator.

Loading

Article metrics loading...

/content/aip/journal/apl/102/23/10.1063/1.4811127
2013-06-12
2014-04-21

Abstract

Air-stable bottom-gate, top-contact n-channel organic transistors based on a naphthalene diimide exhibiting electron mobilities up to 0.8 cm/Vs at low voltages were fabricated. Transistors with channel lengths of 1 m show a transconductance of 60 mS/m, but are significantly limited by the contact resistance. Transmission line measurements in combination with contact resistance models were applied to investigate this influence. Both contact resistance and contact resistivity are proportional to the inverse gate overdrive voltage. Organic complementary ring oscillators were fabricated on a flexible plastic substrate showing record signal delays down to 17 s at a supply voltage of 2.6 V.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/23/1.4811127.html;jsessionid=3m05pq5t5tuos.x-aip-live-02?itemId=/content/aip/journal/apl/102/23/10.1063/1.4811127&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Contact properties of high-mobility, air-stable, low-voltage organic n-channel thin-film transistors based on a naphthalene tetracarboxylic diimide
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/23/10.1063/1.4811127
10.1063/1.4811127
SEARCH_EXPAND_ITEM