NOTICE: Scitation Maintenance Sunday, March 1, 2015.

Scitation users may experience brief connectivity issues on Sunday, March 1, 2015 between 12:00 AM and 7:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. C. B. Mannsfeld, B. C. K. Tee, R. M. Stoltenberg, C. V. H. H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, Nature Mater. 9, 859 (2010).
2. T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, and T. Sakurai, Proc. Natl. Acad. Sci. U.S.A. 102, 12321 (2005).
3. K. Myny, S. Steudel, S. Smout, P. Vicca, F. Furthner, B. van der Putten, A. K. Tripathi, G. H. Gelinck, J. Genoe, W. Dehaene, and P. Heremans, Org. Electron. 11, 1176 (2010).
4. I. Yagi, N. Hirai, Y. Miyamoto, M. Noda, A. Imaoka, N. Yoneya, K. Nomoto, J. Kasahara, A. Yumoto, and T. Urabe, J. Soc. Inf. Disp. 16, 15 (2008).
5. G. H. Gelinck, H. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. van der Putten, T. Geuns, M. Beenhakkers, J. Giesbers, B. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. van Rens, and D. M. de Leeuw, Nature Mater. 3, 106 (2004).
6. F. Ante, D. Kälblein, T. Zaki, U. Zschieschang, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, J. N. Burghartz, K. Kern, and H. Klauk, Small 8, 73 (2012).
7. U. Zschieschang, M. J. Kang, K. Takimiya, T. Sekitani, T. Someya, T. W. Canzler, A. Werner, J. Blochwitz-Nimoth, and H. Klauk, J. Mater. Chem. 22, 4273 (2012).
8. D. Bode, K. Myny, B. Verreet, B. van der Putten, P. Bakalov, S. Steudel, S. Smout, P. Vicca, J. Genoe, and P. Heremans, Appl. Phys. Lett. 96, 133307 (2010).
9. M. Kitamura, Y. Kuzumoto, S. Aomori, and Y. Arakawa, Appl. Phys. Express 4, 051601 (2011).
10. B. K. Crone, A. Dodabalapur, R. Sarpeshkar, R. W. Filas, Y. Y. Lin, Z. Bao, J. H. ONeill, W. Li, and H. E. Katz, J. Appl. Phys. 89, 5125 (2001).
11. M. M. Ling and Z. Bao, Org. Electron. 7, 568 (2006).
12. H. E. Katz, J. Johnson, A. J. Lovinger, and W. Li, J. Am. Chem. Soc. 122, 7787 (2000).
13. B. A. Jones, M. J. Ahrens, M. H. Yoon, A. Facchetti, T. J. Marks, and M. R. Wasielewski, Angew. Chem. Int. Ed. 43, 6363 (2004).
14. H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, and A. Facchetti, Nature 457, 679 (2009).
15. Y. Zhao, C. Di, X. Gao, Y. Hu, Y. Guo, L. Zhang, Y. Liu, J. Wang, W. Hu, and D. Zhu, Adv. Mater. 23, 2448 (2011).
16. J. H. Oh, S. L. Suraru, W. Y. Lee, M. Könemann, H. W. Höffken, C. Röger, R. Schmidt, Y. Chung, W. C. Chen, F. Würthner, and Z. Bao, Adv. Funct. Mater. 20, 2148 (2010).
17. M. Stolte, S. L. Suraru, F. Würthner, J. H. Oh, Z. Bao, J. Brill, M. Könemann, J. Qu, U. Zschieschang, and H. Klauk, Proc. SPIE 7778, 777804 (2010).
18. U. Zschieschang, F. Ante, D. Kälblein, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, J. Blochwitz-Nimoth, and H. Klauk, Org. Electron. 12, 1370 (2011).
19. M. Marinkovic, D. Belaineh, V. Wagner, and D. Knipp, Adv. Mater. 24, 4005 (2012).
20. D. Natali and M. Caironi, Adv. Mater. 24, 1357 (2012).
21. D. Boudinet, G. L. Blevennec, C. Serbutoviez, J.-M. Verilhac, H. Yan, and G. Horowitz, J. Appl. Phys. 105, 084510 (2009).
22. C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J. L. Brédas, P. C. Ewbank, and K. R. Mann, Chem. Mater. 16, 4436 (2004).
23. T. Yamamoto and K. Takimiya, J. Am. Chem. Soc. 129, 2224 (2007).
24. P. A. Anderson, Phys. Rev. 115, 553 (1959).
25. H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).
26. H. Peisert, M. Knupfer, and J. Fink, Appl. Phys. Lett. 81, 2400 (2002).
27. C. Shen and A. Kahn, J. Appl. Phys. 90, 4549 (2001).
28. H. H. Berger, J. Electrochem. Soc. 119, 507 (1972).
29. D. Schroder, Semiconductor Material and Device Characterization (Wiley, 2006).
30. T. J. Richards and H. Sirringhaus, J. Appl. Phys. 102, 094510 (2007).
31. C. Tanase, E. J. Meijer, P. W. M. Blom, and D. M. De Leeuw, Org. Electron. 4, 33 (2003).
32. S. Luan and G. W. Neudeck, J. Appl. Phys. 72, 766 (1992).
33. B. A. Jones, A. Facchetti, M. R. Wasielewski, and T. J. Marks, J. Am. Chem. Soc. 129, 15259 (2007).
34. F. De Angelis, M. Gaspari, A. Procopio, G. Cuda, and E. Di Fabrizio, Chem. Phys. Lett. 468, 193 (2009).
35. K.-J. Baeg, S.-W. Jung, D. Khim, J. Kim, D.-Y. Kim, J. B. Koo, J. R. Quinn, A. Facchetti, I.-K. You, and Y.-Y. Noh, Org. Electron. 14, 1407 (2013).
36. W. Smaal, C. Kjellander, Y. Jeong, A. Tripathi, B. van der Putten, A. Facchetti, H. Yan, J. Quinn, J. Anthony, K. Myny, W. Dehaene, and G. Gelinck, Org. Electron. 13, 1686 (2012).

Data & Media loading...


Article metrics loading...



Air-stable bottom-gate, top-contact n-channel organic transistors based on a naphthalene diimide exhibiting electron mobilities up to 0.8 cm/Vs at low voltages were fabricated. Transistors with channel lengths of 1 m show a transconductance of 60 mS/m, but are significantly limited by the contact resistance. Transmission line measurements in combination with contact resistance models were applied to investigate this influence. Both contact resistance and contact resistivity are proportional to the inverse gate overdrive voltage. Organic complementary ring oscillators were fabricated on a flexible plastic substrate showing record signal delays down to 17 s at a supply voltage of 2.6 V.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Contact properties of high-mobility, air-stable, low-voltage organic n-channel thin-film transistors based on a naphthalene tetracarboxylic diimide