1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Improved cation valence state in molybdenum oxides by ultraviolet-ozone treatments and its applications in organic light-emitting diodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/23/10.1063/1.4811267
1.
1. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
http://dx.doi.org/10.1063/1.98799
2.
2. S. R. Forrest, Nature 428, 911 (2004).
http://dx.doi.org/10.1038/nature02498
3.
3. J. Lewis, S. Grego, B. Chalamala, E. Vick, and D. Temple, Appl. Phys. Lett. 85, 3450 (2004).
http://dx.doi.org/10.1063/1.1806559
4.
4. M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, Science 309, 1215 (2005).
http://dx.doi.org/10.1126/science.1115311
5.
5. T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, Nat. Photonics 6, 105 (2012).
http://dx.doi.org/10.1038/nphoton.2011.318
6.
6. C. W. Chu, S. H. Li, C. W. Chen, V. Shrotriya, and Y. Yang, Appl. Phys. Lett. 87, 193508 (2005).
http://dx.doi.org/10.1063/1.2126140
7.
7. J. Meyer, S. Hamwi, T. Bulow, H. H. Johannes, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 91, 113506 (2007).
http://dx.doi.org/10.1063/1.2784176
8.
8. D. Kumaki, T. Umeda, and S. Tokito, Appl. Phys. Lett. 92, 013301 (2008).
http://dx.doi.org/10.1063/1.2828711
9.
9. Z. Wang, M. W. Alam, Y. Lou, S. Naka, and H. Okada, Appl. Phys. Lett. 100, 043302 (2012).
http://dx.doi.org/10.1063/1.3680249
10.
10. T. Shizuo, N. Koji, and T. Yasunori, J. Phys. D: Appl. Phys. 29, 2750 (1996).
http://dx.doi.org/10.1088/0022-3727/29/11/004
11.
11. H. You, Y. Dai, Z. Zhang, and D. Ma, J. Appl. Phys. 101, 026105 (2007).
http://dx.doi.org/10.1063/1.2430511
12.
12. F. X. Wang, X. F. Qiao, T. Xiong, and D. G. Ma, Org. Electron. 9, 985 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.07.009
13.
13. J. Kim, C. K. Suman, S. Noh, and C. Lee, Displays 31, 139 (2010).
http://dx.doi.org/10.1016/j.displa.2010.03.004
14.
14. P. S. Wang, I. W. Wu, W. H. Tseng, M. H. Chen, and C. I. Wu, Appl. Phys. Lett. 98, 173302 (2011).
http://dx.doi.org/10.1063/1.3579532
15.
15. M. T. Greiner, M. G. Helander, Z. B. Wang, W. M. Tang, J. Qiu, and Z. H. Lu, Appl. Phys. Lett. 96, 213302 (2010).
http://dx.doi.org/10.1063/1.3432447
16.
16. T. Matsushima, G. H. Jin, and H. Murata, J. Appl. Phys. 104, 054501 (2008).
http://dx.doi.org/10.1063/1.2974089
17.
17.See supplementary material at http://dx.doi.org/10.1063/1.4811267 for the quantitative area ratio of dark spots in OLEDs and the UPS, contact angle, and AFM measurements of MoO3 treated by UV-ozone for different time. [Supplementary Material]
18.
18. J. A. Orlicki, J. S. Moore, I. Sendijarevic, and A. J. McHugh, Langmuir 18, 9985 (2002).
http://dx.doi.org/10.1021/la020662x
19.
19. T. Mori and Y. Masumoto, J. Photopolym. Sci. Technol. 19, 209 (2006).
http://dx.doi.org/10.2494/photopolymer.19.209
20.
20. S. D. Cai, C. H. Gao, D. Y. Zhou, W. Gu, and L. S. Liao, ACS Appl. Mater. Interfaces 4, 312 (2012).
http://dx.doi.org/10.1021/am2013568
21.
21. S. Balendhran, J. Deng, J. Z. Ou, S. Walia, J. Scott, J. Tang, K. L. Wang, M. R. Field, S. Russo, S. Zhuiykov, M. S. Strano, N. Medhekar, S. Sriram, M. Bhaskaran, and K. Kalantar-Zadeh, Adv. Mater. 25, 109 (2013).
http://dx.doi.org/10.1002/adma.201203346
22.
22. C. T. Lin, C. H. Yeh, M. H. Chen, S. H. Hsu, C. I. Wu, and T. W. Pi, J. Appl. Phys. 107, 053703 (2010).
http://dx.doi.org/10.1063/1.3309783
23.
23. L. Kihlborg, Acta Chem. Scand. 13, 954 (1959).
http://dx.doi.org/10.3891/acta.chem.scand.13-0954
24.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/23/10.1063/1.4811267
Loading
/content/aip/journal/apl/102/23/10.1063/1.4811267
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/23/10.1063/1.4811267
2013-06-13
2014-08-02

Abstract

The authors demonstrate a thick MoO layer (60 nm) as a good short reduction layer in organic light emitting diodes (OLEDs), which is especially useful for large-area and flexible OLEDs to prevent short circuit issues. The crystallization of organic material and the increase of driving voltage induced by a thick MoO layer in OLEDs were resolved by a simple ultraviolet-ozone (UV-ozone) treatment. Ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, contact angle, and atomic force microscope analyses revealed that a longer UV-ozone treatment resulted in an optimized fraction of oxygen vacancies in MoO, which is responsible for the improved device performance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/23/1.4811267.html;jsessionid=3fbrp3rfqm71j.x-aip-live-02?itemId=/content/aip/journal/apl/102/23/10.1063/1.4811267&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Improved cation valence state in molybdenum oxides by ultraviolet-ozone treatments and its applications in organic light-emitting diodes
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/23/10.1063/1.4811267
10.1063/1.4811267
SEARCH_EXPAND_ITEM