1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Improved cation valence state in molybdenum oxides by ultraviolet-ozone treatments and its applications in organic light-emitting diodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/23/10.1063/1.4811267
1.
1. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
http://dx.doi.org/10.1063/1.98799
2.
2. S. R. Forrest, Nature 428, 911 (2004).
http://dx.doi.org/10.1038/nature02498
3.
3. J. Lewis, S. Grego, B. Chalamala, E. Vick, and D. Temple, Appl. Phys. Lett. 85, 3450 (2004).
http://dx.doi.org/10.1063/1.1806559
4.
4. M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, Science 309, 1215 (2005).
http://dx.doi.org/10.1126/science.1115311
5.
5. T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, Nat. Photonics 6, 105 (2012).
http://dx.doi.org/10.1038/nphoton.2011.318
6.
6. C. W. Chu, S. H. Li, C. W. Chen, V. Shrotriya, and Y. Yang, Appl. Phys. Lett. 87, 193508 (2005).
http://dx.doi.org/10.1063/1.2126140
7.
7. J. Meyer, S. Hamwi, T. Bulow, H. H. Johannes, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 91, 113506 (2007).
http://dx.doi.org/10.1063/1.2784176
8.
8. D. Kumaki, T. Umeda, and S. Tokito, Appl. Phys. Lett. 92, 013301 (2008).
http://dx.doi.org/10.1063/1.2828711
9.
9. Z. Wang, M. W. Alam, Y. Lou, S. Naka, and H. Okada, Appl. Phys. Lett. 100, 043302 (2012).
http://dx.doi.org/10.1063/1.3680249
10.
10. T. Shizuo, N. Koji, and T. Yasunori, J. Phys. D: Appl. Phys. 29, 2750 (1996).
http://dx.doi.org/10.1088/0022-3727/29/11/004
11.
11. H. You, Y. Dai, Z. Zhang, and D. Ma, J. Appl. Phys. 101, 026105 (2007).
http://dx.doi.org/10.1063/1.2430511
12.
12. F. X. Wang, X. F. Qiao, T. Xiong, and D. G. Ma, Org. Electron. 9, 985 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.07.009
13.
13. J. Kim, C. K. Suman, S. Noh, and C. Lee, Displays 31, 139 (2010).
http://dx.doi.org/10.1016/j.displa.2010.03.004
14.
14. P. S. Wang, I. W. Wu, W. H. Tseng, M. H. Chen, and C. I. Wu, Appl. Phys. Lett. 98, 173302 (2011).
http://dx.doi.org/10.1063/1.3579532
15.
15. M. T. Greiner, M. G. Helander, Z. B. Wang, W. M. Tang, J. Qiu, and Z. H. Lu, Appl. Phys. Lett. 96, 213302 (2010).
http://dx.doi.org/10.1063/1.3432447
16.
16. T. Matsushima, G. H. Jin, and H. Murata, J. Appl. Phys. 104, 054501 (2008).
http://dx.doi.org/10.1063/1.2974089
17.
17.See supplementary material at http://dx.doi.org/10.1063/1.4811267 for the quantitative area ratio of dark spots in OLEDs and the UPS, contact angle, and AFM measurements of MoO3 treated by UV-ozone for different time. [Supplementary Material]
18.
18. J. A. Orlicki, J. S. Moore, I. Sendijarevic, and A. J. McHugh, Langmuir 18, 9985 (2002).
http://dx.doi.org/10.1021/la020662x
19.
19. T. Mori and Y. Masumoto, J. Photopolym. Sci. Technol. 19, 209 (2006).
http://dx.doi.org/10.2494/photopolymer.19.209
20.
20. S. D. Cai, C. H. Gao, D. Y. Zhou, W. Gu, and L. S. Liao, ACS Appl. Mater. Interfaces 4, 312 (2012).
http://dx.doi.org/10.1021/am2013568
21.
21. S. Balendhran, J. Deng, J. Z. Ou, S. Walia, J. Scott, J. Tang, K. L. Wang, M. R. Field, S. Russo, S. Zhuiykov, M. S. Strano, N. Medhekar, S. Sriram, M. Bhaskaran, and K. Kalantar-Zadeh, Adv. Mater. 25, 109 (2013).
http://dx.doi.org/10.1002/adma.201203346
22.
22. C. T. Lin, C. H. Yeh, M. H. Chen, S. H. Hsu, C. I. Wu, and T. W. Pi, J. Appl. Phys. 107, 053703 (2010).
http://dx.doi.org/10.1063/1.3309783
23.
23. L. Kihlborg, Acta Chem. Scand. 13, 954 (1959).
http://dx.doi.org/10.3891/acta.chem.scand.13-0954
24.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/23/10.1063/1.4811267
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Microscopic images of working devices; (b) polarized optical microscope images of 35 nm CBP. The samples have a layer of (I) (V) 0 nm, (II) (VI) 1 nm, (III) (VII) 30 nm, (IV) (VIII) 60 nm MoO and devices (I)-(IV) are without UV-ozone treatments, while devices (V)-(VIII) are not.

Image of FIG. 2.

Click to view

FIG. 2.

curves in devices with various thicknesses of MoO with and without UV-ozone (UVO) treatment. The inset shows the corresponding low voltage region.

Image of FIG. 3.

Click to view

FIG. 3.

Half lifetimes of devices with various thicknesses of MoO with and without UV-ozone treatment at an initial luminescence of 1000 cd/m.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Full XPS spectra of MoO treated by UV-ozone for different time. Experimental and fitted spectra of Mo 3 d state for different treatment time of UV-ozone for (b) 0 min, (c) 15 min, and (d) 30 min.

Image of FIG. 5.

Click to view

FIG. 5.

Current and power efficiency of devices with 60 nm MoO treated with UV-ozone for different time.

Tables

Generic image for table

Click to view

Table I.

Fitted parameters for Mo 3d spectra in molybdenum oxide treated by UV-ozone for different times.

Loading

Article metrics loading...

/content/aip/journal/apl/102/23/10.1063/1.4811267
2013-06-13
2014-04-16

Abstract

The authors demonstrate a thick MoO layer (60 nm) as a good short reduction layer in organic light emitting diodes (OLEDs), which is especially useful for large-area and flexible OLEDs to prevent short circuit issues. The crystallization of organic material and the increase of driving voltage induced by a thick MoO layer in OLEDs were resolved by a simple ultraviolet-ozone (UV-ozone) treatment. Ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, contact angle, and atomic force microscope analyses revealed that a longer UV-ozone treatment resulted in an optimized fraction of oxygen vacancies in MoO, which is responsible for the improved device performance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/23/1.4811267.html;jsessionid=ha37pac8qdri7.x-aip-live-01?itemId=/content/aip/journal/apl/102/23/10.1063/1.4811267&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Improved cation valence state in molybdenum oxides by ultraviolet-ozone treatments and its applications in organic light-emitting diodes
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/23/10.1063/1.4811267
10.1063/1.4811267
SEARCH_EXPAND_ITEM