1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
The nature and role of trap states in a dendrimer-based organic field-effect transistor explosive sensor
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/24/10.1063/1.4810914
1.
1. J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, Proc. Natl. Acad. Sci. U.S.A. 98, 4835 (2001).
http://dx.doi.org/10.1073/pnas.091588098
2.
2. G. H. Gelinck, H. E. A. Huitema, E. Van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. Van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. Van Rens, and D. M. De Leeuw, Nature Mater. 3, 106 (2004).
http://dx.doi.org/10.1038/nmat1061
3.
3. L. S. Zhou, A. Wanga, S. C. Wu, J. Sun, S. Park, and T. N. Jackson, Appl. Phys. Lett. 88, 083502 (2006).
http://dx.doi.org/10.1063/1.2178213
4.
4. P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, and S. D. Theiss, Appl. Phys. Lett. 82, 3964 (2003).
http://dx.doi.org/10.1063/1.1579554
5.
5. H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, Nature 445, 745 (2007).
http://dx.doi.org/10.1038/nature05533
6.
6. T. B. Singh, P. Senkarabacak, N. S. Sariciftci, A. Tanda, C. Lackner, R. Hagelauer, and G. Horowitz, Appl. Phys. Lett. 89, 033512 (2006).
http://dx.doi.org/10.1063/1.2235947
7.
7. J. Zaumseil, R. H. Friend, and H. Sirringhaus, Nature Mater. 5, 69 (2006).
http://dx.doi.org/10.1038/nmat1537
8.
8. E. B. Namdas, B. B. Y. Hsu, Z. H. Liu, S. C. Lo, P. L. Burn, and I. D. W. Samuel, Adv. Mater. 21, 4957 (2009).
http://dx.doi.org/10.1002/adma.200900919
9.
9. J. H. Seo, E. B. Namdas, A. Gutacker, A. J. Heeger, and G. C. Bazan, Appl. Phys. Lett. 97, 043303 (2010).
http://dx.doi.org/10.1063/1.3467856
10.
10. T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, Nature Mater. 9, 1015 (2010).
http://dx.doi.org/10.1038/nmat2896
11.
11. F. Marinelli, A. Dell'Aquila, L. Torsi, J. Tey, G. P. Suranna, P. Mastrorilli, G. Romanazzi, C. F. Nobile, S. G. Mhaisalkar, N. Cioffi, and F. Palmisano, Sens. Actuators B 140, 445 (2009).
http://dx.doi.org/10.1016/j.snb.2009.04.035
12.
12. A. M. Andringa, J. R. Meijboom, E. C. P. Smits, S. G. J. Mathijssen, P. W. M. Blom, and D. M. de Leeuw, Adv. Funct. Mater. 21, 100 (2011).
http://dx.doi.org/10.1002/adfm.201001560
13.
13. A. Das, R. Dost, T. H. Richardson, M. Grell, D. C. Wedge, D. B. Kell, J. J. Morrison, and M. L. Turner, Sens. Actuators B 137, 586 (2009).
http://dx.doi.org/10.1016/j.snb.2009.01.006
14.
14. D. C. Wedge, A. Das, R. Dost, J. Kettle, M. B. Madec, J. J. Morrison, M. Grell, D. B. Kell, T. H. Richardson, S. Yeates, and M. L. Turner, Sens. Actuators B 143, 365 (2009).
http://dx.doi.org/10.1016/j.snb.2009.09.030
15.
15. T. Someya, A. Dodabalapur, J. Huang, K. C. See, and H. E. Katz, Adv. Mater. 22, 3799 (2010).
http://dx.doi.org/10.1002/adma.200902760
16.
16. M. Erouel, K. Diallo, J. Tardy, P. Blanchard, J. Roncali, P. Frere, and N. Jaffrezic, Mater. Sci. Eng., C 28, 965 (2008).
http://dx.doi.org/10.1016/j.msec.2007.10.035
17.
17. J. Huang, T. J. Dawidczyk, B. J. Jung, J. Sun, A. F. Mason, and H. E. Katz, J. Mater. Chem. 20, 2644 (2010).
http://dx.doi.org/10.1039/b916037j
18.
18. R. S. Dudhe, S. P. Tiwari, H. N. Raval, M. A. Khaderbad, R. Singh, J. Sinha, M. Yedukondalu, M. Ravikanth, A. Kumar, and V. R. Rao, Appl. Phys. Lett. 93, 263306 (2008).
http://dx.doi.org/10.1063/1.3049130
19.
19. A. Das, R. Dost, T. Richardson, M. Grell, J. J. Morrison, and M. L. Turner, Adv. Mater. 19, 4018 (2007).
http://dx.doi.org/10.1002/adma.200701504
20.
20. B. Crone, A. Dodabalapur, A. Gelperin, L. Torsi, H. E. Katz, A. J. Lovinger, and Z. Bao, Appl. Phys. Lett. 78, 2229 (2001).
http://dx.doi.org/10.1063/1.1360785
21.
21. G. Tang, S. S. Y. Chen, M. Aljada, P. L. Burn, and P. Meredith, Org. Electron. 14, 1255 (2013).
http://dx.doi.org/10.1016/j.orgel.2013.02.021
22.
22. K. A. Knights, S. G. Stevenson, C. P. Shipley, S.-C. Lo, S. Olsen, R. E. Harding, S. Gambino, P. L. Burn, and I. D. W. Samuel, J. Mater. Chem. 18, 2121 (2008).
http://dx.doi.org/10.1039/b717750j
23.
23. H. Cavaye, P. E. Shaw, X. Wang, P. L. Burn, S.-C. Lo, and P. Meredith, Macromolecules 43, 10253 (2010).
http://dx.doi.org/10.1021/ma102369q
24.
24. A. J. Clulow, P. L. Burn, P. Meredith, and P. E. Shaw, J. Mater. Chem. 22, 12507 (2012).
http://dx.doi.org/10.1039/c2jm32072j
25.
25. G. Tang, S. S. Y. Chen, P. E. Shaw, K. Hegedus, X. Wang, P. L. Burn, and P. Meredith, Polym. Chem. 2, 2360 (2011).
http://dx.doi.org/10.1039/c1py00222h
26.
26. K. Mutkins, S. S. Y. Chen, M. Aljada, B. J. Powell, S. Olsen, P. L. Burn, and P. Meredith, Proc. SPIE 8117, 811704 (2011).
http://dx.doi.org/10.1117/12.892640
28.
28. F. Garnier, G. Horowitz, X. Z. Peng, and D. Fichou, Synth. Met. 45, 163 (1991).
http://dx.doi.org/10.1016/0379-6779(91)91800-P
29.
29. A. Salleo, F. Endicott, and R. A. Street, Appl. Phys. Lett. 86, 263505 (2005).
http://dx.doi.org/10.1063/1.1968437
30.
30. D. Knipp, R. A. Street, A. Volkel, and J. Ho, J. Appl. Phys. 93, 347 (2003).
http://dx.doi.org/10.1063/1.1525068
31.
31. A. Salleo and R. A. Street, J. Appl. Phys. 94, 4231 (2003).
http://dx.doi.org/10.1063/1.1606411
32.
32. R. A. Street, A. Salleo, and M. L. Chabinyc, Phys. Rev. B 68, 085316 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.085316
33.
33. Z. Bao and J. Locklin, Organic Field-Effect Transistors (CRC Press, Taylor and Francis Group, 2007).
34.
34. W. D. Gill, J. Appl. Phys. 43, 5033 (1972).
http://dx.doi.org/10.1063/1.1661065
35.
35. H. Bässler, Philos. Mag. B 50, 347 (1984).
http://dx.doi.org/10.1080/13642818408238860
36.
36. L. Pautmeier, R. Richert, and H. Bässler, Synth. Met. 37, 271 (1990).
http://dx.doi.org/10.1016/0379-6779(90)90158-H
37.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/24/10.1063/1.4810914
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Molecular structure of G1. (b) Architecture of G1 active channel OFET.

Image of FIG. 2.

Click to view

FIG. 2.

Typical output of a G1 OFET measured in air in the dark with sweeping from 10 V to −80 V and sweeping from 10 V to −80 V.

Image of FIG. 3.

Click to view

FIG. 3.

Transfer characteristics of a G1 OFET (W:L = 50 mm:80 m) in the saturation regime. Solid lines are transfer curves with the gate sweeping forward and backward before NT exposure; dashed lines are that of the device after 1 min exposure to saturated NT vapor; dotted lines are that of the device after 5 min heating at 80 °C.

Image of FIG. 4.

Click to view

FIG. 4.

Temperature dependence of the carrier mobility of a G1 OFET before (empty circles) and after exposure to saturated NT vapor (filled diamonds). (a) Fits to Eq. (4) reveal the activation energy of different trap types; (b) fits to Eq. (5) reveal the overall width of the distribution of the states.

Loading

Article metrics loading...

/content/aip/journal/apl/102/24/10.1063/1.4810914
2013-06-17
2014-04-16

Abstract

We report the fabrication and charge transport characterization of carbazole dendrimer-based organic field-effect transistors (OFETs) for the sensing of explosive vapors. After exposure to -nitrotoluene (NT) vapor, the OFET channel carrier mobility decreases due to trapping induced by the absorbed NT. The influence of trap states on transport in devices before and after exposure to NT vapor has been determined using temperature-dependent measurements of the field-effect mobility. These data clearly show that the absorption of NT vapor into the dendrimer active layer results in the formation of additional trap states. Such states inhibit charge transport by decreasing the density of conducting states.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/24/1.4810914.html;jsessionid=9eeo5did8ct5d.x-aip-live-03?itemId=/content/aip/journal/apl/102/24/10.1063/1.4810914&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The nature and role of trap states in a dendrimer-based organic field-effect transistor explosive sensor
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/24/10.1063/1.4810914
10.1063/1.4810914
SEARCH_EXPAND_ITEM