1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/3/10.1063/1.4758300
1.
1. S. Kurtz and J. Geisz, Opt. Express 18, A73 (2010).
http://dx.doi.org/10.1364/OE.18.000A73
2.
2. J. Olson, T. Gessert, and M. Al-Jassim, in Proceedings of the 18th IEEE Photovoltaic Specialists Conference (IEEE, New York, 1985), p. 552.
3.
3. H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, Energy Environ. Sci. 2, 174 (2009).
http://dx.doi.org/10.1039/b809257e
4.
4. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, 2011).
5.
5. A.G. Imenes and D. R. Mills, Sol. Energy Mater. Sol. Cells 84, 19 (2004).
http://dx.doi.org/10.1016/j.solmat.2004.01.038
6.
6. R. R. King, Nat. Photonics 2, 284 (2008).
http://dx.doi.org/10.1038/nphoton.2008.68
7.
7. A. Luque, J. Appl. Phys. 110, 031301 (2011).
http://dx.doi.org/10.1063/1.3600702
8.
8. J. M. Olson, S. R. Kurtz, A. E. Kibbler, and P. Faine, Appl. Phys. Lett. 56, 623 (1990).
http://dx.doi.org/10.1063/1.102717
9.
9. K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, C. Kramer, J. M. Olson, Appl. Phys. Lett. 65, 989 (1994).
http://dx.doi.org/10.1063/1.112171
10.
10. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, Appl. Phys. Lett. 90, 183516 (2007).
http://dx.doi.org/10.1063/1.2734507
11.
11. J. F. Geisz, S. Kurtz, M. W. Wanlass, J. S. Ward, A. Duda, D. J. Friedman, J. M. Olson, W. E. McMahon, T. E. Moriarty, and J. T. Kiehl, Appl. Phys. Lett. 91, 023502 (2007).
http://dx.doi.org/10.1063/1.2753729
12.
12. R. R. King, A. B. , W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, in Proceedings of the 24th European Photovoltaic Solar Energy Conference (Hamburg, 2009), p. 55.
13.
13. R. R. King, D. Bushari, D. Larrabee, X.-Q. Liu, E. Rehder, K. Edmondson, H. Cotal, R. K. Jones, J. H. Ermer, C. M. Fetzer, D. C. Law, and N. H. Karam, Prog. Photovoltaics 20, 801 (2012).
http://dx.doi.org/10.1002/pip.1255
14.
14. M. Wiemer, V. Sabnis, and H. Yuen, Proceedings of the SPIE Optics + Photonics − Solar Energy + Technology (San Diego, 2011).
15.
15. J. M. Zahler, K. Tanabe, C. Ladous, T. Pinnington, F. D. Newman, and H. A. Atwater, Appl. Phys. Lett. 91, 012108 (2007).
http://dx.doi.org/10.1063/1.2753751
16.
16. N. Szabo, B. E. Sagol, U. Seidel, K. Schwarzburg, and T. Hannappel, Phys. Status Solidi (RRL) 2, 254 (2008).
http://dx.doi.org/10.1002/pssr.200802141
17.
17. M. W. Wanlass, T. I. Coutts, J. S. Ward, K. A. Emery, T. A. Gessert, and C. R. Osterwald, in Proceedings of the 22nd IEEE Photovoltaic Specialists Conference (IEEE, 1991), p. 38.
18.
18.Here, the optimization refers to the best band gap combination corresponding to semiconductor compounds with lattice spacing between GaAs and InP, therefore the design is termed “optimized.”
19.
19. R. Stangl, M. Kriegel, and M. Schmidt, in Proceedings of the 4th World Conference on Photovoltaic Energy Conversion (IEEE, New York, 2006), p. 1350.
20.
20. M. S. Leite, R. L. Woo, W. D. Hong, D. C. Law, and H. A. Atwater, Appl. Phys. Lett. 98, 093502 (2011).
http://dx.doi.org/10.1063/1.3531756
21.
21. M. S. Leite, E. C. Warmann, G. M. Kimball, S. P. Burgos, D. M. Callahan, and H. A. Atwater, Adv. Mater. 23, 3801 (2011).
http://dx.doi.org/10.1002/adma.201101309
22.
22.The crystal quality of the subcells was analyzed by high resolution x-ray diffraction measurements using a conventional Cu-K x-ray source. The x-ray beam size was 4 × 25 mm2, giving an accurate and representative estimative of the crystal diffraction condition, and therefore its lattice constant. (004) symmetric ω-2θ scans were performed to confirm that the material grown was lattice-matched to the InP substrate.
23.
23. R. L. Woo, W. D. Hong, S. Mesropian, M. S. Leite, H. A. Atwater, and D. C. Law, in 37th Photovoltaic Specialists Conference (IEEE, Seattle, 2011).
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/3/10.1063/1.4758300
Loading
/content/aip/journal/apl/102/3/10.1063/1.4758300
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/3/10.1063/1.4758300
2013-01-22
2014-11-25

Abstract

An approach for an all lattice-matched multijunction solar cell optimized design is presented with 5.807 Å lattice constant, together with a detailed analysis of its performance by means of full device modeling. The simulations show that a (1.93 eV)In0.37 Al 0.63As/(1.39 eV)In0.38Ga0.62As0.57P0.43/(0.94 eV)In0.38Ga0.62As 3-junction solar cell can achieve efficiencies >51% under 100-suns illumination (with Voc = 3.34 V). As a key proof of concept, an equivalent 3-junction solar cell lattice-matched to InP was fabricated and tested. The independently connected single junction solar cells were also tested in a spectrum splitting configuration, showing similar performance to a monolithic tandem device, with Voc = 1.8 V.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/3/1.4758300.html;jsessionid=5cfan1imf1rd9.x-aip-live-06?itemId=/content/aip/journal/apl/102/3/10.1063/1.4758300&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/3/10.1063/1.4758300
10.1063/1.4758300
SEARCH_EXPAND_ITEM