1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Spasmodic growth during the rapid solidification of undercooled Ag-Cu eutectic melts
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/3/10.1063/1.4775670
1.
1. M. Li, K. Nagashio, and K. Kuribayashi, Mater. Sci. Eng., A 375–377, 528 (2004).
http://dx.doi.org/10.1016/j.msea.2003.10.132
2.
2. T. Z. Kattamis and M. C. Flemings, Metall. Trans. 1, 1449 (1970).
3.
3. M. Li, K. Nagashio, and K. Kuribayashi, Acta Mater. 50, 3241 (2002).
http://dx.doi.org/10.1016/S1359-6454(02)00146-5
4.
4. J. F. Li, W. Q. Jie, S. Zhao, and Y. H. Zhou, Metall. Mater. Trans. A 38, 1806 (2007).
http://dx.doi.org/10.1007/s11661-007-9198-2
5.
5. J. F. Li, X. L. Li, L. Liu, and S. Y. Lu, J. Mater. Res. 23, 2139 (2008).
http://dx.doi.org/10.1557/JMR.2008.0259
6.
6. C. Yang, J. Gao, Y. K. Zhang, M. Kolbe, and D. M. Herlach, Acta Mater. 59, 3915 (2011).
http://dx.doi.org/10.1016/j.actamat.2011.03.016
7.
7. R. Goetzinger, M. Barth, and D. M. Herlach, Acta Mater. 46, 1647 (1998).
http://dx.doi.org/10.1016/S1359-6454(97)00339-X
8.
8. M. Li and K. Kuribayashi, Metall. Mater. Trans. A 34, 2999 (2003).
http://dx.doi.org/10.1007/s11661-003-0199-5
9.
9. E. Cadirli, D. M. Herlach, and T. Volkmann, J. Non-Cryst. Solids 356, 461 (2010).
http://dx.doi.org/10.1016/j.jnoncrysol.2009.12.019
10.
10. B. Wei, D. M. Herlach, F. Sommer, and W. Kurz, Mater. Sci. Eng., A 173, 355 (1993).
http://dx.doi.org/10.1016/0921-5093(93)90244-9
11.
11. L. Liu, J. F. Li, and Y. H. Zhou, Acta Mater. 59, 5558 (2011).
http://dx.doi.org/10.1016/j.actamat.2011.05.028
12.
12. B. Wei, D. M. Herlach, F. Sommer, and W. Kurz, Mater. Sci. Eng., A 181/182, 1150 (1994).
http://dx.doi.org/10.1016/0921-5093(94)90821-4
13.
13. W. J. Yao, N. Wang, and B. Wei, Mater. Sci. Eng., A 344, 10 (2003).
http://dx.doi.org/10.1016/S0921-5093(01)01895-0
14.
14. S. Walder and P. L. Ryder, J. Appl. Phys. 73, 1965 (1993).
http://dx.doi.org/10.1063/1.353187
15.
15. N. Wang, C. D. Cao, and B. Wei, Adv. Space Res. 24, 1257 (1999).
http://dx.doi.org/10.1016/S0273-1177(99)00729-2
16.
16. S. Zhao, J. F. Li, L. Liu, and Y. H. Zhou, Mater. Charact. 60, 519 (2009).
http://dx.doi.org/10.1016/j.matchar.2008.12.006
17.
17. S. Zhao, J. F. Li, L. Liu, and Y. H. Zhou, Chin. Phys. B 18, 1917 (2009).
http://dx.doi.org/10.1088/1674-1056/18/5/032
18.
18. S. Zhao, J. F. Li, L. Liu, and Y. H. Zhou, J. Cryst. Growth 311, 1387 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2008.12.006
19.
19. S. Zhao, J. F. Li, L. Liu, and Y. H. Zhou, J. Alloys Compd. 478, 252 (2009).
http://dx.doi.org/10.1016/j.jallcom.2008.12.054
20.
20. B. L. Jones, Metall. Trans. 2, 2950 (1971).
http://dx.doi.org/10.1007/BF02813283
21.
21. J. F. Li and Y. H. Zhou, Acta Mater. 53, 2351 (2005).
http://dx.doi.org/10.1016/j.actamat.2005.01.042
22.
22. T. Aoyama and K. Kuribayashi, Mater. Sci. Eng., A 304–306, 231 (2001).
http://dx.doi.org/10.1016/S0921-5093(00)01494-5
23.
23. H. Assadi, S. Reutzel, and D. M. Herlach, Acta Mater. 54, 2793 (2006).
http://dx.doi.org/10.1016/j.actamat.2006.02.018
24.
24. R. Ahmad, R. F. Cochrane, and A. M. Mullis, J. Mater. Sci. 47, 2411 (2012).
http://dx.doi.org/10.1007/s10853-011-6062-y
25.
25. R. Ahmad, R. F. Cochrane, and A. M. Mullis, Intermetallics 22, 55 (2012).
http://dx.doi.org/10.1016/j.intermet.2011.10.021
26.
26. S. E. Battersby, R. F. Cochrane, and A. M. Mullis, Mater. Sci. Eng., A 226, 443 (1997).
http://dx.doi.org/10.1016/S0921-5093(97)80055-X
27.
27. M. Vandyoussefi, H. W. Kerr, and W. Kurz, Acta Mater. 48, 2297 (2000).
http://dx.doi.org/10.1016/S1359-6454(00)00034-3
28.
28. K. A. Jackson and J. D. Hunt, Trans. Metall. Soc. AIME 236, 1129 (1966).
29.
29. R. Trivedi, P. Mangin, and W. Kurz, Acta Metall. 35, 971 (1987).
http://dx.doi.org/10.1016/0001-6160(87)90176-3
30.
30. W. Kurz and R. Trivedi, Metall. Trans. A 22, 3051 (1991).
http://dx.doi.org/10.1007/BF02650266
31.
31. J. Rosam, P. K. Jimack, and A. M. Mullis, Acta Mater. 56, 4559 (2008).
http://dx.doi.org/10.1016/j.actamat.2008.05.029
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/3/10.1063/1.4775670
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Micrograph (left) showing the structure of an Ag-Cu alloy undercooled to 40 K prior to solidification. The structure is cellular with regular eutectic in the cell center and anomalous eutectic at the cell boundaries. Magnified region (right) from cell center (delineated by white square).

Image of FIG. 2.

Click to view

FIG. 2.

High speed video images of the solidification interface of an Ag-Cu alloy undercooled by 40 K prior to nucleation. Frames are taken at (a) t = 1.368 s, (b) t = 1.584 s, and (c) t = 1.612 s after nucleation. The nucleation point and growth direction are shown in (a). The boundary line in (b) and (c) denotes the location of the solid-liquid interface at t = 1.368 s (enhanced online). [URL: http://dx.doi.org/10.1063/1.4775670.1]doi: 10.1063/1.4775670.1.

Image of FIG. 3.

Click to view

FIG. 3.

Plot of the scaled average grey level along a line from the nucleation point and in the growth direction for the recalescence front in an Ag-Cu alloy sample undercooled by 27 K (grey), 40 K (black, solid), and 51 K (black, dashed). The characteristic time, τ0, is 12 s at 27 K, 5 s at 40 K, and 4 s at 51 K.

video/mp4,video/x-flv,video/flv,audio.mp3,audio.mpeg

Multimedia

The following multimedia file is available:
Loading

Article metrics loading...

/content/aip/journal/apl/102/3/10.1063/1.4775670
2013-01-23
2014-04-20

Abstract

A melt fluxing technique has been used to undercool Ag-Cu eutectic alloy by 10–70 K and the subsequent recalescence has been studied using high speed imaging. Spasmodic growth of the solidification front was observed, in which the growth front would make a series of quasi-periodic jumps separated by extended periods during which time growth appeared to arrest. Evidence of this previously unreported mode of growth is presented. The high speed images and microstructural evidence support the theory that anomalous eutectics form by the growth and subsequent remelting of eutectic dendrites.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/3/1.4775670.html;jsessionid=46nd5dn95sl50.x-aip-live-01?itemId=/content/aip/journal/apl/102/3/10.1063/1.4775670&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Spasmodic growth during the rapid solidification of undercooled Ag-Cu eutectic melts
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/3/10.1063/1.4775670
10.1063/1.4775670
SEARCH_EXPAND_ITEM