1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Suppression of Auger-stimulated efficiency droop in nitride-based light emitting diodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/3/10.1063/1.4789364
1.
1. T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys., Part 1 38, 3976 (1999).
http://dx.doi.org/10.1143/JJAP.38.3976
2.
2. M. R. Krames, J. Bhat, D. Collins, N. F. Gardner, W. Gotz, C. H. Lowery, M. Ludowise, P. S. Martin, G. Mueller, R. Mueller-Mach, S. Rudaz, D. A. Steigerwald, S. A. Stockman, and J. J. Wierer, Phys. Status Solidi A 192, 237 (2002).
http://dx.doi.org/10.1002/1521-396X(200208)192:2<237::AID-PSSA237>3.0.CO;2-I
3.
3. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91, 141101 (2007).
http://dx.doi.org/10.1063/1.2785135
4.
4. J. Piprek, Phys. Status Solidi A 207, 2217 (2010).
http://dx.doi.org/10.1002/pssa.201026149
5.
5. M. Schubert and J. K. Kim, Int. J. High Speed Electron. Syst. 20, 247 (2011).
http://dx.doi.org/10.1142/S0129156411006581
6.
6. I. V. Rozhansky and D. A. Zakheim, Phys. Status Solidi A 204, 227 (2007).
http://dx.doi.org/10.1002/pssa.200673567
7.
7. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett. 91, 183507 (2007).
http://dx.doi.org/10.1063/1.2800290
8.
8. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, Appl. Phys. Lett. 73, 1691 (1998).
http://dx.doi.org/10.1063/1.122247
9.
9. J. Xie, X. Ni, Q. Fan, R. Shimada, U. Ozgur, and H. Morkoc, Appl. Phys. Lett. 93, 121107 (2008).
http://dx.doi.org/10.1063/1.2988324
10.
10. Y. Yang, X. A. Cao, and C. Yan, IEEE Trans. Electron Devices 55, 1771 (2008).
http://dx.doi.org/10.1109/TED.2008.923561
11.
11. J. Mickeviius, J. Jurkeviius, M. S. Shur, J. Yang, R. Gaska, and G. Tamulaitis, Opt. Express 20, 25195 (2012).
http://dx.doi.org/10.1364/OE.20.025195
12.
12. N. F. Gardner, G. O. Muller, Y. C. Shen, G. Chen, S. Watanabe, W. Gotz, and M. R. Krames, Appl. Phys. Lett. 91, 243506 (2007).
http://dx.doi.org/10.1063/1.2807272
13.
13. V. N. Abakumov, V. I. Perel, and I. N. Yassievich, Nonradiative Recombination in Semiconductors (North Holland, New York, 1991).
14.
14. A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, IEEE Trans. Electron Devices 57, 79 (2010).
http://dx.doi.org/10.1109/TED.2009.2035538
15.
15. M. Meneghini, N. Trivellin, G. Meneghesso, and E. Zanoni, J. Appl. Phys. 106, 114508 (2009).
http://dx.doi.org/10.1063/1.3266014
16.
16. M. Zhang, P. Bhattacharya, J. Singh, and J. Hinckley, Appl. Phys. Lett. 95, 201108 (2009).
http://dx.doi.org/10.1063/1.3266520
17.
17. J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, Appl. Phys. Lett. 92, 261103 (2008).
http://dx.doi.org/10.1063/1.2953543
18.
18. E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, Appl. Phys. Lett. 98, 161107 (2011).
http://dx.doi.org/10.1063/1.3570656
19.
19. K. T. Delaney, P. Rinke, and C. G. Van de Walle, Appl. Phys. Lett. 94, 191109 (2009).
http://dx.doi.org/10.1063/1.3133359
20.
20. D. I. Chepic, Al. L. Efros, A. I. Ekimov, M. G. Ivanov, V. A. Kharchenko, I. A. Kudriavtsev, and T. V. Yazeva, J. Lumin. 47, 113 (1990).
http://dx.doi.org/10.1016/0022-2313(90)90007-X
21.
21. G. G. Zegrya and V. A. Kharchenko, Sov. Phys. JETP 74, 173 (1992).
22.
22. P. Roussignol, M. Kull, D. Ricard, F. de Rougemont, R. Frey, and C. Flytzanis, Appl. Phys. Lett. 51, 1882 (1987).
http://dx.doi.org/10.1063/1.98499
23.
23. Al. L. Efros, “ Auger processes is nanosize semiconductor crystals,” Semiconductor Nanocrystals: From Basic Principles to Devise Applications edited by Al. L. Efros, D. J. Lockwood, and L. Tsybeskov (Kluwer Academic, NY, 2003), p. 52, Chap. II.
24.
24. G. E. Cragg and Al. L. Efros, Nano Lett. 10, 313 (2010).
http://dx.doi.org/10.1021/nl903592h
25.
25. X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, Al. L. Efros, and T. D. Krauss, Nature 459, 686 (2009).
http://dx.doi.org/10.1038/nature08072
26.
26. K. P. O'Donnell, M. Auf der Maur, A. Di Carlo, K. Lorenz, and SORBET Consortium, Phys. Status Solidi (RRL) 6, 49 (2012).
http://dx.doi.org/10.1002/pssr.201100206
27.
27. C. R. Pidgeon and R. N. Brown, Phys. Rev. 146, 575 (1966).
http://dx.doi.org/10.1103/PhysRev.146.575
28.
28. A. S. Polkovnikov and G. G. Zegrya, Phys. Rev. B 58, 4039 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.4039
29.
29. R. A. Suris, Sov. Phys. Semicond. 20, 1258 (1986).
30.
30. A. C. Gossard, J. Quantum Electron. 22, 1649 (1986).
http://dx.doi.org/10.1109/JQE.1986.1073165
31.
31. R. A. Arif, Y. K. Ee, and N. Tansu, Phys. Status Solidi A 205, 96 (2008).
http://dx.doi.org/10.1002/pssa.200777478
32.
32. I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003).
http://dx.doi.org/10.1063/1.1600519
33.
33. M. I. Dyakonov and V. Yu. Kachorovskii, Phys. Rev. B 49, 17130 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.17130
34.
34. T. Detchprohm, M. Zhu, Y. Li, Y. Xia, C. Wetzel, E. A. Preble, L. Liu, T. Paskova, and D. Hanser, Appl. Phys. Lett. 92, 241109 (2008).
http://dx.doi.org/10.1063/1.2945664
35.
35. T. Detchprohm, M. Zhu, Y. Li, L. Zhao, S. You, C. Wetzel, E. A. Preble, T. Paskova, and D. Hanser, Appl. Phys. Lett. 96, 051101 (2010).
http://dx.doi.org/10.1063/1.3299257
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/3/10.1063/1.4789364
Loading
/content/aip/journal/apl/102/3/10.1063/1.4789364
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/3/10.1063/1.4789364
2013-01-25
2014-07-24

Abstract

We calculate the rate of nonradiative Auger recombination in InGaN/GaN quantum wells with rectangular and smooth confining potentials. The calculations show that the rate of Auger recombination in rectangular quantum wells is sufficiently high to explain the efficiency droop in nitride-based light emitting diodes (LEDs). This rate, however, can be reduced by softening of the confining potential and a three-fold suppression is demonstrated in the studied quantum wells. The suppression of the Auger recombination rate improves LED radiative efficiency and reduces the droop effect, as we show using the standard recombination (ABC) model.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/3/1.4789364.html;jsessionid=q6gd19v5uf0n.x-aip-live-02?itemId=/content/aip/journal/apl/102/3/10.1063/1.4789364&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Suppression of Auger-stimulated efficiency droop in nitride-based light emitting diodes
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/3/10.1063/1.4789364
10.1063/1.4789364
SEARCH_EXPAND_ITEM