1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/3/10.1063/1.4789535
1.
1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Nature 417, 156159 (2002).
http://dx.doi.org/10.1038/417156a
2.
2. B. S. Williams, Nature Photon. 1, 517525 (2007).
http://dx.doi.org/10.1038/nphoton.2007.166
3.
3. H.-W. Hubers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 89, 061115 (2006).
http://dx.doi.org/10.1063/1.2335803
4.
4. J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 86, 244104 (2005).
http://dx.doi.org/10.1063/1.1949724
5.
5. K. L. Nguyen, M. L. Johns, L. Gladden, C. H. Worrall, P. Alexander, H. E. Beere, M. Pepper, D. A. Ritchie, J. Alton, S. Barbieri, and E. H. Linfield, Opt. Express 14, 21232129 (2006).
http://dx.doi.org/10.1364/OE.14.002123
6.
6. S. Kumar, B. S. Williams, Q. Qin, A. W. Lee, Q. Hu, and J. L. Reno, Opt. Express 15, 113 (2007).
http://dx.doi.org/10.1364/OE.15.000113
7.
7. J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, Opt. Express 14, 1167211680 (2006).
http://dx.doi.org/10.1364/OE.14.011672
8.
8. L. Mahler, M. I. Amanti, C. Walther, A. Tredicucci, F. Beltram, J. Faist, H. E. Beere, and D. A. Ritchie, Opt. Express 17, 1303113039 (2009).
http://dx.doi.org/10.1364/OE.17.013031
9.
9. E. Mujagić, C. Deutsch, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, K. Unterrainer, and G. Strasser, Appl. Phys. Lett. 95, 011120 (2009).
http://dx.doi.org/10.1063/1.3176966
10.
10. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, Nature Photon. 3, 4649 (2008).
http://dx.doi.org/10.1038/NPHOTON.2008.248
11.
11. A. Wei Min Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, Opt. Lett. 32, 28402842 (2007).
http://dx.doi.org/10.1364/OL.32.002840
12.
12. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, Nature Mater. 9, 730735 (2010).
http://dx.doi.org/10.1038/nmat2822
13.
13. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, Nature 457, 174178 (2009).
http://dx.doi.org/10.1038/nature07636
14.
14. T.-Y. Kao, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 96, 101106 (2010).
http://dx.doi.org/10.1063/1.3358134
15.
15. M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, Nature Photon. 3, 586590 (2009).
http://dx.doi.org/10.1038/nphoton.2009.168
16.
16. X. F. Li and S. F. Yu, J. Appl. Phys. 106, 053103 (2009).
http://dx.doi.org/10.1063/1.3211295
17.
17. R. H. Jordan, D. G. Hall, O. King, G. Wicks, and S. Rishton, J. Opt. Soc. Am. B 14, 449 (1997).
http://dx.doi.org/10.1364/JOSAB.14.000449
18.
18. C. Olson, P. L. Greene, G. W. Wicks, D. G. Hall, and S. Rishton, Appl. Phys. Lett. 72, 1284 (1998).
http://dx.doi.org/10.1063/1.121051
19.
19. S. Kumar, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 94, 131105 (2009).
http://dx.doi.org/10.1063/1.3114418
20.
20. M. Toda, IEEE J. Quantum Electron. 26, 473481 (1990).
http://dx.doi.org/10.1109/3.52123
21.
21. Y. Chassagneux, R. Colombelli, W. Maineults, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, Opt. Express 17, 94919502 (2009).
http://dx.doi.org/10.1364/OE.17.009491
22.
22. S.-H. Kim, S.-K. Kim, and Y.-H. Lee, Phys. Rev. B 73, 235117 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.235117
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/3/10.1063/1.4789535
Loading
/content/aip/journal/apl/102/3/10.1063/1.4789535
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/3/10.1063/1.4789535
2013-01-25
2014-07-28

Abstract

We demonstrate single-mode surface-emitting terahertz frequency quantum cascade lasers utilising non-uniform second-order distributed feedback concentric-circular-gratings. The grating is designed for single-mode operation and surface emission for efficient and directional optical power out-coupling. The devices exhibit single-mode operation over the entire dynamic range with a side-mode-suppression-ratio of around 30 dB at 78 K, and a six-fold rotationally symmetric far-field pattern. In addition, the devices show a peak output power approximately three times higher than in ridge-waveguide lasers of similar size, whilst maintaining similar threshold current densities for the 3.8 THz emission and without remarkably sacrificing the maximum temperature operation performance. Owing to the high symmetry of the structure and the broad area light emission from surface, the devices are potentially very suitable for use as single-mode, high power emitters for integration into two-dimensional laser arrays.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/3/1.4789535.html;jsessionid=gdoh4jc8ei9l6.x-aip-live-06?itemId=/content/aip/journal/apl/102/3/10.1063/1.4789535&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/3/10.1063/1.4789535
10.1063/1.4789535
SEARCH_EXPAND_ITEM