1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/4/10.1063/1.4789365
1.
1. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. USA 102(30 ), 10451 (2005).
http://dx.doi.org/10.1073/pnas.0502848102
2.
2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438(7065 ), 197 (2005).
http://dx.doi.org/10.1038/nature04233
3.
3. Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438(7065 ), 201 (2005).
http://dx.doi.org/10.1038/nature04235
4.
4. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81(1 ), 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
5.
5. S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod. Phys. 83(2 ), 407 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.407
6.
6. G. L. Frey, S. Elani, M. Homyonfer, Y. Feldman, and R. Tenne, Phys. Rev. B 57(11 ), 6666 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.6666
7.
7. A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Nano Lett. 10(4 ), 1271 (2010).
http://dx.doi.org/10.1021/nl903868w
8.
8. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105(13 ), 136805 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.136805
9.
9. T. Cheiwchanchamnangij and W. R. L. Lambrecht, Phys. Rev. B 85(20 ), 205302 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.205302
10.
10. S. W. Han, H. Kwon, S. K. Kim, S. Ryu, W. S. Yun, D. H. Kim, J. H. Hwang, J. S. Kang, J. Baik, H. J. Shin, and S. C. Hong, Phys. Rev. B 84(4 ), 045409 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.045409
11.
11. A. Ayari, E. Cobas, O. Ogundadegbe, and M. S. Fuhrer, J. Appl. Phys. 101(1 ), 014507 (2007).
http://dx.doi.org/10.1063/1.2407388
12.
12. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6(3 ), 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
13.
13. H. Liu and P. D. D. Ye, IEEE Electron Device Lett. 33(4 ), 546 (2012).
http://dx.doi.org/10.1109/LED.2012.2184520
14.
14. M. W. Lin, L. Z. Liu, Q. Lan, X. B. Tan, K. S. Dhindsa, P. Zeng, V. M. Naik, M. M. C. Cheng, and Z. X. Zhou, J. Phys. D-Appl. Phys. 45(34 ), 345102 (2012).
http://dx.doi.org/10.1088/0022-3727/45/34/345102
15.
15. S. Kim, A. Konar, W. S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J. B. Yoo, J. Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, Nat. Commun. 3, 1011 (2012).
http://dx.doi.org/10.1038/ncomms2018
16.
16. Y. J. Zhang, J. T. Ye, Y. Matsuhashi, and Y. Iwasa, Nano Lett. 12(3 ), 1136 (2012).
http://dx.doi.org/10.1021/nl2021575
17.
17. M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape, and P. Barbara, “ Photovoltaic effect in gated MoS2 Schottky junctions,” preprint arXiv:1206.6125 (2012).
18.
18. R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, P. Avouris, and M. Steiner, “ Electroluminescence in Single Layer MoS2,” preprint arXiv:1211.4311 (2012).
19.
19. A. Ramasubramaniam, D. Naveh, and E. Towe, Phys. Rev. B 84(20 ), 205325 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.205325
20.
20. Q. H. Liu, L. Z. Li, Y. F. Li, Z. X. Gao, Z. F. Chen, and J. Lu, J. Phys. Chem. C 116(40 ), 21556 (2012).
http://dx.doi.org/10.1021/jp307124d
21.
21. J. T. Ye, Y. J. Zhang, R. Akashi, M. S. Bahramy, R. Arita, and Y. Iwasa, Science 338(6111 ), 1193 (2012).
http://dx.doi.org/10.1126/science.1228006
22.
22. C. Jang, S. Adam, J. H. Chen, E. D. Williams, S. Das Sarma, and M. S. Fuhrer, Phys, Rev. Lett. 101(14 ), 146805 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.146805
23.
23. H. Qiu, L. J. Pan, Z. N. Yao, J. J. Li, Y. Shi, and X. R. Wang, Appl. Phys. Lett. 100(12 ), 123104 (2012).
http://dx.doi.org/10.1063/1.3696045
24.
24. M. S. Fuhrer and J. Hone, “ Measurement of mobility in dual-gated MoS2 transistors,” preprint ArXiv:1301.4288.
25.
25. W. Z. Bao, G. Liu, Z. Zhao, H. Zhang, D. Yan, A. Deshpande, B. LeRoy, and C. N. Lau, Nano Res. 3(2 ), 98 (2010).
http://dx.doi.org/10.1007/s12274-010-1013-5
26.
26. K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, Phys. Rev. B 85(11 ), 115317 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.115317
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/4/10.1063/1.4789365
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematics of four-probe MoS2 devices on SiO2/Si and PMMA/SiO2/Si. (b) Optical image of a typical PMMA-supported MoS2 device. Green area is MoS2 flake, yellow areas are Ti/Al electrodes, and blue area is the PMMA/SiO2/Si substrate. (c–d) Conductivity σ as a function of gate voltage V g on linear (c) and semi-logarithmic (d) scales for four MoS2 devices on PMMA with thickness of 1.5 (red), 6.5 (brown), 47 (green), and 80 nm (blue).

Image of FIG. 2.

Click to view

FIG. 2.

Room temperature field effect mobility μ FE as function of thickness t for 25 PMMA-supported (blue squares) and 6 SiO2-supported MoS2 (red circles) devices. Only electron mobility is shown for SiO2-supported devices. PMMA-supported devices with measurable ambipolar behavior are indicated as dashed-line connected hollow squares (corresponding hole-carrier mobility) and solid squares (corresponding electron-carrier mobility).

Image of FIG. 3.

Click to view

FIG. 3.

(a) Thickness-dependent field effect mobility μ FE (t) of PMMA (blue) and SiO2 (red) support MoS2 before (hollow triangles) and after (solid triangles) additional PMMA top-coating for most devices measured in Fig. 2 . Only the higher of hole or electron mobility is plotted for devices with ambipolar behavior. (b–c) Typical σ (V g) characteristics before (red curve) and after (blue curve) PMMA top-coating for a PMMA-supported device (b) and a SiO2-supported device (c) Insets: schematic views of devices after top-coating of PMMA.

Loading

Article metrics loading...

/content/aip/journal/apl/102/4/10.1063/1.4789365
2013-01-29
2014-04-18

Abstract

We fabricate MoS2 field effect transistors on both SiO2 and polymethyl methacrylate (PMMA) dielectrics and measure charge carrier mobility in a four-probe configuration. For multilayer MoS2 on SiO2, the mobility is 30–60 cm2/Vs, relatively independent of thickness (15–90 nm), and most devices exhibit unipolar n-type behavior. In contrast, multilayer MoS2 on PMMA shows mobility increasing with thickness, up to 470 cm2/Vs (electrons) and 480 cm2/Vs (holes) at thickness ∼50 nm. The dependence of the mobility on thickness points to a long-range dielectric effect of the bulk MoS2 in increasing mobility.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/4/1.4789365.html;jsessionid=6ede5slj7fjg.x-aip-live-02?itemId=/content/aip/journal/apl/102/4/10.1063/1.4789365&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/4/10.1063/1.4789365
10.1063/1.4789365
SEARCH_EXPAND_ITEM