1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
High-performance and air-processed polymer solar cells by room-temperature drying of the active layer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/4/10.1063/1.4789522
1.
1. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
http://dx.doi.org/10.1002/adfm.200500211
2.
2. M. R. Reyes, K. Kim, and D. L. Carroll, Appl. Phys. Lett. 87, 083506 (2005).
http://dx.doi.org/10.1063/1.2006986
3.
3. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C.-S. Ha, and M. Ree, Nat. Mater. 5, 197 (2006).
http://dx.doi.org/10.1038/nmat1574
4.
4. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).
http://dx.doi.org/10.1038/nmat1500
5.
5. C.-Y. Nam, D. Su, and C. T. Black, Adv. Funct. Mater. 19, 3552 (2009).
http://dx.doi.org/10.1002/adfm.200900311
6.
6. C. Lin, E.-Y. Lin, and F.-Y. Tsai, Adv. Funct. Mater. 20, 834 (2010).
http://dx.doi.org/10.1002/adfm.200901807
7.
7. Z. Hu, J. Zhang, Z. Hao, Q. Hao, X. Geng, and Y. Zhao, Appl. Phys. Lett. 98, 123302 (2011).
http://dx.doi.org/10.1063/1.3569758
8.
8. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nature Photon. 6, 591 (2012).
http://dx.doi.org/10.1038/nphoton.2012.190
9.
9. L. Dou, J. You, J. Yang, C. C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, Nature Photon. 6, 180 (2012).
http://dx.doi.org/10.1038/nphoton.2011.356
10.
10. H. Hoppe and N. S. Sariciftci, J. Mater. Chem. 16, 45 (2006).
http://dx.doi.org/10.1039/b510618b
11.
11. K. M. Coakley, and M. D. McGehee, Chem. Mater. 16, 4533 (2004).
http://dx.doi.org/10.1021/cm049654n
12.
12. P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, Adv. Mater. 19, 1551 (2007).
http://dx.doi.org/10.1002/adma.200601093
13.
13. G. Dennler, M. C. Scharber, and C. J. Brabec, Adv. Mater. 21, 1323 (2009).
http://dx.doi.org/10.1002/adma.200801283
14.
14. A. J. Moulé and K. Meerholz, Adv. Funct. Mater. 19, 3028 (2009).
http://dx.doi.org/10.1002/adfm.200900775
15.
15. S. Günes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev. 107, 1324 (2007).
http://dx.doi.org/10.1021/cr050149z
16.
16. G. Li, V. Shrotriya, Y. Yao, J. Huang, and Y. Yang, J. Mater. Chem. 17, 3126 (2007).
http://dx.doi.org/10.1039/b703075b
17.
17. G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, Adv. Funct. Mater. 17, 1636 (2007).
http://dx.doi.org/10.1002/adfm.200600624
18.
18. Y. Zhao, Z. Xie, Y. Qu, Y. Geng, and L. Wang, Appl. Phys. Lett. 90, 043504 (2007).
http://dx.doi.org/10.1063/1.2434173
19.
19. V. D. Mihailetchi, H. X. Xie, B. de Boer, L. M. Popescu, J. C. Hummelen, P. W. M. Blom, and L. J. A. Koster, Appl. Phys. Lett. 89, 012107 (2006).
http://dx.doi.org/10.1063/1.2212058
20.
20. X. Yang, J. Loos, S. C. Veenstra, W. J. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, Nano Lett. 5, 579 (2005).
http://dx.doi.org/10.1021/nl048120i
21.
21. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, Adv. Funct. Mater. 11, 374 (2001).
http://dx.doi.org/10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W
22.
22. A. Gadisa, M. Svensson, M. R. Andersson, and O. Inganäs, Appl. Phys. Lett. 84, 1609 (2004).
http://dx.doi.org/10.1063/1.1650878
23.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/4/10.1063/1.4789522
Loading
/content/aip/journal/apl/102/4/10.1063/1.4789522
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/4/10.1063/1.4789522
2013-02-01
2014-08-31

Abstract

High device performance is demonstrated in air-processed polymer solar cells made from an active layer of poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester, with optimized efficiency and fill factor as high as 4.71% and 0.71, respectively. The degree of self-organization of the active layer can be varied by controlling the solvent evaporation rate at different room temperature (298–292 K). Device performance improvement originates from an increased absorption and increased charge-carrier mobility in the active layer. This free-annealing process compatible with flexible substrates contributes to a flexible cell with an efficiency of 4.06%.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/4/1.4789522.html;jsessionid=g7ugkj4qc58t.x-aip-live-03?itemId=/content/aip/journal/apl/102/4/10.1063/1.4789522&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High-performance and air-processed polymer solar cells by room-temperature drying of the active layer
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/4/10.1063/1.4789522
10.1063/1.4789522
SEARCH_EXPAND_ITEM