1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Improved cathode buffer layer to decrease exciton recombination in organic planar heterojunction solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/4/10.1063/1.4789852
1.
1. M. A. Green, K. Emery, Y. Hishikawa, W. Wart, and E. D. Dunlop, Prog. Photovoltaics 20, 1220 (2012).
http://dx.doi.org/10.1002/pip.2163
2.
2. C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).
http://dx.doi.org/10.1063/1.96937
3.
3. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 17891791 (1995).
http://dx.doi.org/10.1126/science.270.5243.1789
4.
4. P. Peumans, S. Uchida, and S. R. Forrest, Nature (London) 425, 158 (2003).
http://dx.doi.org/10.1038/nature01949
5.
5. A. Mishra and P. Bäuerle, Angew. Chem. Int. Ed. 51, 20202067 (2012).
http://dx.doi.org/10.1002/anie.201102326
6.
6. M. Hirade and C. Adachi, Appl. Phys. Lett. 99, 153302 (2011).
http://dx.doi.org/10.1063/1.3650472
7.
7. G. Wei, X. Xiao, S. Wang, J. D. Zimmerman, K. Sun, V. V. Diev, M. E. Thompson, and S. R. Forrest, Nano Lett. 11, 42614264 (2011).
http://dx.doi.org/10.1021/nl2022515
8.
8. P. Peumans and S. R. Forrest, Appl. Phys. Lett. 79, 126 (2001).
http://dx.doi.org/10.1063/1.1384001
9.
9. H. Gommans, B. Verreet, B. P. Rand, R. Müller, J. Poortmans, P. Heremans, and J. Genoe, Adv. Funct. Mater. 18, 3686 (2008).
http://dx.doi.org/10.1002/adfm.200800815
10.
10. B. E. Lassiter, G. Wei, S. Wang, J. D. Zimmerman, V. V. Diev, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 98, 243307 (2011).
http://dx.doi.org/10.1063/1.3598426
11.
11. T. Zhuang, Z. Su, Y. Liu, B. Chu, W. Li, J. Wang, F. Jin, X. Yan, B. Zhao, F. Zhang, and D. Fan, Appl. Phys. Lett. 100, 243902 (2012).
http://dx.doi.org/10.1063/1.4729146
12.
12. H.-W. Lin, H.-W. Kang, Z.-Y. Huang, C.-W. Chen, Y.-H. Chen, L.-Y. Lin, F. Lin, and K.-T. Wong, Org. Electron. 13, 19251929 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.05.049
13.
13. W.-I. Jeong, Y. E. Lee, H.-S. Shim, T.-M. Kim, S.-Y. Kim, and J.-J. Kim, Adv. Funct. Mater. 22, 3089 (2012).
http://dx.doi.org/10.1002/adfm.201200069
14.
14. J. Huang and Y. Yang, Appl. Phys. Lett. 91, 203505 (2007).
http://dx.doi.org/10.1063/1.2807278
15.
15. C. K. Renshaw, J. D. Zimmerman, B. E. Lassiter, and S. R. Forrest, Phys. Rev. B 86, 085324 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.085324
16.
16. J. Wagner, M. Gruber, A. Wilke, Y. Tanake, K. Topczak, A. Steindamm, U. Hörmann, A. Opitz, Y. Nakayama, H. Ishii, J. Pflaum, N. Koch, and W. Brütting, J. Appl. Phys. 111, 054509 (2012).
http://dx.doi.org/10.1063/1.3692050
17.
17.See supplementary material at http://dx.doi.org/10.1063/1.4789852 for experimental details, for absorption spectra, for AFM, and for simulation vs. measured reflection and EQE. [Supplementary Material]
18.
18. K. H. Wong, K. Ananthanarayanan, J. Luther, and P. Balaya, J. Phys. Chem. C 116, 1634616351 (2012).
http://dx.doi.org/10.1021/jp303679y
19.
19. B. P. Rand, J. Genoe, P. Heremans, and J. Poortmans, Prog. Photovoltaics 15, 659676 (2007).
http://dx.doi.org/10.1002/pip.788
20.
20. B. P. Rand, D. P. Burk, and S. R. Forrest, Phys. Rev. B 75, 115327 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.115327
21.
21. J. Reynaerts, V. I. Arkhipov, P. Heremans, and J. Poortmans, Adv. Funct. Mater. 16, 784790 (2006).
http://dx.doi.org/10.1002/adfm.200500578
22.
22. V. I. Arkhipov, E. V. Emelianova, and H. Bässler, Phys. Rev. Lett. 82, 13211324 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.1321
23.
23. R. Kersting, U. Lemmer, M. Deussen, H. J. Bakker, R. F. Mahrt, H. Kurz, V. I. Arkhipov, H. Bässler, and E. O. Göbel, Phys. Rev. Lett. 73, 1440 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.1440
24.
24. K. Tvingstedt, K. Vandewal, F. Zhang, and O. Inganäs, J. Phys. Chem. C 114, 2182421832 (2010).
http://dx.doi.org/10.1021/jp107587h
25.
25. M. A. Faist, T. Kirchartz, W. Gong, R. S. Ashraf, I. McCulloch, J. C. de Mello, N. J. Ekins-Daukes, D. D. C. Bradley, and J. Nelson, J. Am. Chem. Soc. 134, 685692 (2012).
http://dx.doi.org/10.1021/ja210029w
26.
26. K. Vandewal, Z. Ma, J. Bergqvist, Z. Tang, E. Wang, P. Hendriksson, K. Tvingstedt, M. R. Andersson, F. Zhang, and O. Inganäs, Adv. Funct. Mater. 22, 34803490 (2012).
http://dx.doi.org/10.1002/adfm.201200608
27.
27. A. Petersen, A. Ojala, T. Kirchartz, T. A. Wagner, F. Würthner, and U. Rau, Phys. Rev. B 85, 245208 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.245208
28.
28. V. Capozzi, T. Trovato, H. Berger, and G. F. Lorusso, Carbon 35, 763766 (1997).
http://dx.doi.org/10.1016/S0008-6223(97)00034-1
29.
29. W. Guss, J. Feldmann, E. O. Göbel, C. Taliani, H. Mahn, W. Müller, P. Häussler, and H. V. der Meer, Phys. Rev. Lett. 72, 2644 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.2644
30.
30. R. H. Young, C. W. Tang, and A. P. Marchetti, Appl. Phys. Lett. 80, 874 (2002).
http://dx.doi.org/10.1063/1.1445271
31.
31. Y. Luo, H. Aziz, G. Xu, and Z. D. Popovic, Chem. Mater. 19, 22882291 (2007).
http://dx.doi.org/10.1021/cm062105s
32.
32. J. M. Hodgkiss, S. Albert-Seifried, A. Rao, A. J. Barker, A. R. Campbell, R. A. Marsh, and R. H. Friend, Adv. Funct. Mater. 22, 15671577 (2012).
http://dx.doi.org/10.1002/adfm.201102433
33.
33. J. C. Wang, X. C. Ren, S. Q. Shi, C. W. Leung, and P. K. L. Chan, Org. Electron. 12, 880885 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.02.016
34.
34.This estimate neglects the exact spatial distribution of the Frenkel excitons.
35.
35. T. Sakurai, S. Toyoshima, H. Kitazume, S. Masuda, H. Kato, and K. Akimoto, J. Appl. Phys. 107, 043707 (2010).
http://dx.doi.org/10.1063/1.3309278
36.
36. K. Akaike and Y. Kubozono, Org. Electron. 14, 17 (2013).
http://dx.doi.org/10.1016/j.orgel.2012.09.025
37.
37. N. J. Watkins, G. P. Kushto, and A. J. Mäkinen, J. Appl. Phys. 104, 013712 (2008).
http://dx.doi.org/10.1063/1.2952055
38.
38. I. G. Hill, J. Schwartz, and A. Kahn, Org. Electron. 1, 513 (2000).
http://dx.doi.org/10.1016/S1566-1199(00)00002-1
39.
39. H. Vázquez, W. Gao, F. Flores, and A. Kahn, Phys. Rev. B 71, 041306R (2005).
http://dx.doi.org/10.1103/PhysRevB.71.041306
40.
40. I. G. Hill, D. Milliron, J. Schwartz, and A. Kahn, Appl. Surf. Sci. 166, 354362 (2000).
http://dx.doi.org/10.1016/S0169-4332(00)00449-9
41.
41. A. K. Topczak, T. Roller, B. Engels, W. Brütting, and J. Pflaum, e-print arXiv:1207.1036v1.
42.
42. L. A. A. Petterson, L. S. Roman, and O. Inganäs, J. Appl. Phys. 86, 487 (1999).
http://dx.doi.org/10.1063/1.370757
43.
43. P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
http://dx.doi.org/10.1063/1.1534621
44.
44. D. Cheyns, B. P. Rand, and P. Heremans, Appl. Phys. Lett. 97, 033301 (2010).
http://dx.doi.org/10.1063/1.3464169
45.
45. W. A. Luhman and R. J. Holmes, Adv. Funct. Mater. 21, 764771 (2011).
http://dx.doi.org/10.1002/adfm.201001928
46.
46. M. Zhang, H. Wang, H. Tian, Y. Geng, and C. W. Tang, Adv. Mater. 23, 4960 (2011).
http://dx.doi.org/10.1002/adma.201102173
47.
47. G. Chen, H. Sasabe, Z. Wang, X. F. Wang, Z. Hong, Y. Yang, and J. Kido, Adv. Mater. 24, 27682773 (2012).
http://dx.doi.org/10.1002/adma.201200234
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/4/10.1063/1.4789852
Loading
/content/aip/journal/apl/102/4/10.1063/1.4789852
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/4/10.1063/1.4789852
2013-01-29
2014-10-26

Abstract

We show that an advanced cathode buffer design, consisting of bathocuproine/3,4,9,10-perylenetetracarboxylic bis-benzimidazole/Ag, increases the short-circuit current of organic planar heterojunction cells and reduces the J-V slope at reverse voltages. We study the physical origin of these effects by measuring reflectivity, voltage dependent external quantum efficiency, and voltage dependent photoluminescence. Our findings suggest that the observed effects are mainly associated with a voltage dependent polaron-induced exciton quenching in the C60 layer. Finally, this improved cathode buffer design is applied to a diindeno[1,2,3-cd:1′,2′,3′-lm]perylene/C70 based cell, leading to a considerable planar heterojunction efficiency of 5.7%.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/4/1.4789852.html;jsessionid=5iep0gotfq6gp.x-aip-live-06?itemId=/content/aip/journal/apl/102/4/10.1063/1.4789852&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Improved cathode buffer layer to decrease exciton recombination in organic planar heterojunction solar cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/4/10.1063/1.4789852
10.1063/1.4789852
SEARCH_EXPAND_ITEM