NOTICE: Scitation Maintenance Sunday, March 1, 2015.

Scitation users may experience brief connectivity issues on Sunday, March 1, 2015 between 12:00 AM and 7:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
2. L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, Nature Photon. 6, 180 (2012).
3. F. C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394 (2009).
4. D. S. Hecht, L. Hu, and G. Irvin, Adv. Mater. 23, 1482 (2011).
5. S.-I. Na, S.-S. Kim, J. Jo, and D.-Y. Kim, Adv. Mater. 20, 4061 (2008).
6. Y. Xia, K. Sun, and J. Ouyang, Adv. Mater. 24, 2436 (2012).
7. J.-S. Yeo, J.-M. Yun, D.-Y. Kim, S. Park, S.-S. Kim, M.-H. Yoon, T.-W. Kim, and S.-I. Na, ACS Appl. Mater. Interfaces 4, 2551 (2012).
8. C.-H. Chung, T.-B. Song, B. Bob, R. Zhu, H.-S. Duan, and Y. Yang, Adv. Mater. 24, 5499 (2012).
9. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, Science 305, 1273 (2004).
10. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
11. X. Wan, G. Long, L. Huang, and Y. Chen, Adv. Mater. 23, 5342 (2011).
12. S. Lee, J.-S. Yeo, Y. Ji, C. Cho, D.-Y. Kim, S.-I. Na, B. H. Lee, and T. Lee, Nanotechnology 23, 344013 (2012).
13. G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008).
14. J. X. Geng, L. J. Liu, S. B. Yang, S. C. Youn, D. W. Kim, J. S. Lee, J. K. Choi, and H. T. Jung, J. Phys. Chem. C 114, 14433 (2010).
15. J.-M. Yun, J.-S. Yeo, J. Kim, H.-G. Jeong, D.-Y. Kim, Y.-J. Noh, S.-S. Kim, B.-C. Ku, and S.-I. Na, Adv. Mater. 23, 4923 (2011).
16. S.-J. Byun, H. Lim, G.-Y. Shin, T.-H. Han, S. H. Oh, J.-H. Ahn, H. C. Choi, and T.-W. Lee, J. Phys. Chem. Lett. 2, 493 (2011).
17. H.-J. Shin, W. M. Choi, S.-M. Yoon, G. H. Han, Y. S. Woo, E. S. Kim, S. J. Chae, X.-S. Li, A. Benayad, D. D. Loc, F. Gunes, Y. H. Lee, and J.-Y. Choi, Adv. Mater. 23, 4392 (2011).
18. M. A. Fanton, J. A. Robinson, C. Puls, Y. Liu, M. J. Hollander, B. E. Weiland, M. Labella, K. Trumbull, R. Kasarda, C. Howsare, J. Stitt, and D. W. Snyder, ACS Nano 5, 8062 (2011).
19. V. Sridhar, J. H. Jeon, and I. K. Oh, Carbon 49, 222 (2011).
20. J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. H. Ge, L. Song, L. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, Nano Lett. 12, 844 (2012).
21. H.-I. Joh, S. Lee, T.-W. Kim, S. Y. Hwang, and J. R. Hahn, “Synthesis and properties of an atomically thin carbon nanosheet similar to graphene and it promising use as an organic thin film transistor,” Carbon (in press), doi:
22. M. S. A. Rahaman, A. F. Ismail, and A. Mustafa, Polym. Degrad. Stab. 92, 1421 (2007).
23. E. Fitzer, W. Frohs, and M. Heine, Carbon 24, 387 (1986).
24. J. R. Pels, F. Kapteijn, J. A. Moulijn, and Q. Zhu, Carbon 33, 1641 (1995).
25. A. Turchanin, A. Beyer, C. T. Nottbohm, X. Zhang, R. Stosch, A. Sologubenko, J. Mayer, P. Hinze, T. Weimann, and A. Golzhauser, Adv. Mater. 21, 1233 (2009).
26. W. Gao, L. B. Alemany, L. Ci, and P. M. Ajayan, Nat. Chem. 1, 403 (2009).
27. I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, Nat. Commun. 1, 73 (2010).
28. G. Haacke, J. Appl. Phys. 47, 4086 (1976).
29. S.-B. Kang, J.-W. Lim, S.-I. Na, and H.-K. Kim, Sol. Energy Mater. Sol. Cells 107, 373 (2012).
30. S.-I. Na, G. Wang, S.-S. Kim, T.-W. Kim, S.-H. Oh, B.-K. Yu, T. Lee, and D.-Y. Kim, J. Mater. Chem. 19, 9045 (2009).
31. J.-S. Yeo, J.-M. Yun, S.-S. Kim, D.-Y. Kim, J. Kim, and S.-I. Na, Semicond. Sci. Technol. 26, 034010 (2011).

Data & Media loading...


Article metrics loading...



We demonstrate that solution-processed carbon nanosheet (CNS) films can efficiently serve as transparent electrodes for organic solar cells (OSCs). The CNS was obtained by spin-coating of polyacrylonitrile (PAN) dissolved in dimethylformamide on quartz substrates, followed by stabilization and carbonization processes to convert polymer into CNS. The thickness of the newly developed CNS films was easily controlled by varying the PAN solution concentration. The polymer-converted CNS films were intensively examined for the feasibility of the use as transparent anodes in solar cells. This approach could be highly desirable for all-solution-processed or printed OSCs.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Efficient organic solar cells with solution-processed carbon nanosheets as transparent electrodes