1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/4/10.1063/1.4790277
1.
1. J. Lu, T. C. Chang, Y. T. Chen, J. J. Huang, P. C. Yang, S. C. Chen, H. C. Huang, D. S. Gan, N. J. Ho, Y. Shi, and A. K. Chu, Appl. Phys. Lett. 96, 262107 (2010).
http://dx.doi.org/10.1063/1.3457870
2.
2. T. C. Chang, F. Y. Jian, S. C. Chen, and Y. T. Tsai, Mater. Today 14, 608 (2011).
http://dx.doi.org/10.1016/S1369-7021(11)70302-9
3.
3. S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, P. S. Lin, B. H. Tseng, J. H. Shy, S. M. Sze, C. Y. Chang, and C. H. Lien, IEEE Trans. Electron Device Lett. 28, 809 (2007).
http://dx.doi.org/10.1109/LED.2007.903885
4.
4. M. Fujimoto, H. Koyama, Y. Nishi, and T. Suzuki, Appl. Phys. Lett. 91, 223504 (2007).
http://dx.doi.org/10.1063/1.2816124
5.
5. H. Shima, F. Takano, H. Muramatsu, H. Akinaga, Y. Tamai, I. H. Inoue, and H. Takagi, Appl. Phys. Lett. 93, 113504 (2008).
http://dx.doi.org/10.1063/1.2982426
6.
6. D. Choi, D. Lee, H. Sim, M. Chang, and H. Hwang, Appl. Phys. Lett. 88, 082904 (2006).
http://dx.doi.org/10.1063/1.2178405
7.
7. S. C. Chen, T. C. Chang, S. Y. Chen, C. W. Chen, S. C. Chen, S.M. Sze, M. J. Tsai, M. J. Kao, and F. S. Yeh Huang, Solid-State Electron. 62, 40 (2011).
http://dx.doi.org/10.1016/j.sse.2010.12.014
8.
8. Y. T. Tsai, T. C. Chang, C. C. Lin, S. C. Chen, C. W. Chen, S. M. Sze, F. S. Yeh(Huang), and T. Y. Tseng, Electrochem. Solid-State Lett. 14, H135 (2011).
http://dx.doi.org/10.1149/1.3531843
9.
9. M. C. Chen, T. C. Chang, S. Y. Huang, S. C. Chen, C. W. Hu, C. T. Tsai, and S. M. Sze, Electrochem. Solid-State Lett. 13, H191 (2010).
http://dx.doi.org/10.1149/1.3360181
10.
10. J. J. Huang, T. C. Chang, J. B. Yang, S. C. Chen, P. C. Yang, Y. T. Chen, H. C. Tseng, S. M. Sze, A. K. Chu, and M. J. Tsai, IEEE Electron Device Lett. 33, 1387 (2012).
http://dx.doi.org/10.1109/LED.2012.2206365
11.
11. K. C. Chang, T. M. Tsai, T. C. Chang, Y. E. Syu, C. C. Wang, S. L. Chuang, C. H. Li, D. S. Gan, and S. M. Sze, Appl. Phys. Lett. 99, 263501 (2011).
http://dx.doi.org/10.1063/1.3671991
12.
12. P. C. Yang, T. C. Chang, S. C. Chen, Y. S. Lin, H. C. Huang, and D. S. Gan, Electrochem. Solid-State Lett. 14, H93 (2011).
http://dx.doi.org/10.1149/1.3518701
13.
13. C. C. Lin, T. C. Chang, C. H. Tu, W. R. Chen, C. W. Hu, S. M. Sze, T. Y. Tseng, S. C. Chen, and J. Y. Lin, Appl. Phys. Lett. 93, 222101 (2008).
http://dx.doi.org/10.1063/1.3039065
14.
14. C. H. Tung, K. L. Pey, L. J. Tang, M. K. Radhakrishnan, W. H. Lin, F. Palumbo, and S. Lombardo, Appl. Phys. Lett. 83, 2223 (2003).
http://dx.doi.org/10.1063/1.1611649
15.
15. M. Liu, Z. Abid, W. Wang, X. He, Q. Liu, and W. Guan, Appl. Phys. Lett. 94, 233106 (2009).
http://dx.doi.org/10.1063/1.3151822
16.
16. H. C. Tseng, T. C. Chang, J. J. Huang, P. C. Yang, Y. T. Chen, F. Y. Jian, S. M. Sze, and M. J. Tsai, Appl. Phys. Lett. 99, 132104 (2011).
http://dx.doi.org/10.1063/1.3645004
17.
17. J. Yi, X. D. He, Y. Sun, and Y. Li, Appl. Surf. Sci. 253, 4361 (2007).
http://dx.doi.org/10.1016/j.apsusc.2006.09.063
18.
18. J. G. Choi, D. Choi, and L. T. Thompson, Appl. Surf. Sci. 108, 103 (1997).
http://dx.doi.org/10.1016/S0169-4332(96)00561-2
19.
19. K. Jung, H. Seo, Y. Kim, H. Im, J. P. Hong, J. W. Park, and J. K. Lee, Appl. Phys. Lett. 90, 052104 (2007).
http://dx.doi.org/10.1063/1.2437668
20.
20. L. Goux, J. G. Lisoni, X. P. Wang, M. Jurczak, and D. J. Wouters, IEEE Trans. Electron Devices 56, 2363 (2009).
http://dx.doi.org/10.1109/TED.2009.2028378
21.
21. U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, IEEE Trans. Electron Devices 56, 193 (2009).
http://dx.doi.org/10.1109/TED.2008.2010584
22.
22. K. M. Kim, G. H. Kim, S. J. Song, J. Y. Seok, M. H. Lee, J. H. Yoon, and C. S. Hwang, Nanotechnology 21, 305203 (2010).
http://dx.doi.org/10.1088/0957-4484/21/30/305203
23.
23. S. Yu, Y. Wu, and H. -S. P. Wong, Appl. Phys. Lett. 98, 103514 (2011).
http://dx.doi.org/10.1063/1.3564883
24.
24. S. Yu, X. Guan, and H. -S. P. Wong, IEEE Trans. Electron Devices 59, 1183 (2012).
http://dx.doi.org/10.1109/TED.2012.2184544
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/4/10.1063/1.4790277
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Structural diagram and (b) switching behavior of the device using Mo-doped SiO2 film. XPS analyses of (c) Si 2p3/2, and (d) O 1s. The left and right insets of (b) show the forming characteristic and the temperature-dependence trend of LRS, respectively.

Image of FIG. 2.

Click to view

FIG. 2.

(a) The unstable switching characteristic of 20nm-thick MoOx. (b) Activation failure during the forming process for 23 nm-thick SiO2 film. (c) TEM image of Mo-doped SiO2 film. The left and right insets of (a) show the switching stability and metallic temperature behavior of LRS, respectively.

Image of FIG. 3.

Click to view

FIG. 3.

(a) The repeatable switching characteristic of 12 nm-thick SiO2 film and (b) comparison with the switching characteristic of 20 nm-thick Mo-doped SiO2. Left inset of (a) shows stable switching behavior; right inset of (a) presents temperature behavior of LRS showing that oxygen vacancies dominate the conduction mechanism.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Statistics for the LRS and HRS in samples A and B. (b) Conduction mechanisms of samples A and B in HRS are, respectively, dominated by Schottky and Poole-Frenkel emissions. (c) Schematic diagrams to illustrate the behaviors after the forming process.

Loading

Article metrics loading...

/content/aip/journal/apl/102/4/10.1063/1.4790277
2013-02-01
2014-04-23

Abstract

This report compares Mo-doped and undoped SiO2 thin films of a similar thickness as well as MoOx. The Mo-doped SiO2 film exhibited switching behavior after the forming process, unlike the undoped SiO2 film. Through material analyses, a self-assembled layer is observed in the Mo-doped SiO2 film. Due to the formation of this layer, the thickness required to be broken down is effectively reduced. Subsequently, the occurrence of the switching behavior in the thinner SiO2 film further confirmed the supposition. A comparison of the two switching behaviors shows that SiO2 dominates the switching characteristic of the Mo-doped SiO2.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/4/1.4790277.html;jsessionid=24j8b62nug7p4.x-aip-live-02?itemId=/content/aip/journal/apl/102/4/10.1063/1.4790277&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/4/10.1063/1.4790277
10.1063/1.4790277
SEARCH_EXPAND_ITEM