1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Two-photon induced excited-state absorption and optical limiting properties in a chiral polymer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/4/10.1063/1.4790391
1.
1. Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, and Y. Chen, Adv. Mater. 21, 1275 (2009).
http://dx.doi.org/10.1002/adma.200801617
2.
2. P. C. Haripadmam, M. K. Kavitha, H. John, B. Krishnan, and P. Gopinath, Appl. Phys. Lett. 101, 071103 (2012).
http://dx.doi.org/10.1063/1.4745605
3.
3. M. P. Joshi, J. Swiatkiewicz, F. Xu, P. N. Prasad, B. A. Reinhardt, and R. Kannan, Opt. Lett. 23, 1742 (1998).
http://dx.doi.org/10.1364/OL.23.001742
4.
4. W. Sun, C. C. Byeon, C. M. Lawson, G. M. Gray, and D. Wang, Appl. Phys. Lett. 77, 1759 (2000).
http://dx.doi.org/10.1063/1.1311321
5.
5. Y. P. Han, M. H. Luo, Q. W. Wang, J. X. Wang, and X. L. Gao, Adv. Mater. Res. 295–297, 152 (2011).
http://dx.doi.org/10.4028/www.scientific.net/AMR.295-297.152
6.
6. J. Gupta, C. Vijayan, S. K. Maurya, and D. Goswami, J. Appl. Phys. 109, 113101 (2011).
http://dx.doi.org/10.1063/1.3587178
7.
7. C. Zheng, X. Y. Ye, and X. Q. Xiao, Adv. Mater. Res. 476–478, 923 (2012).
http://dx.doi.org/10.4028/www.scientific.net/AMR.476-478.923
8.
8. M. O. Senge, M. Fazekas, E. G. A. Notaras, W. J. Blau, M. Zawadzka, O. B. Locos, and E. M. Ni Mhuircheartaigh, Adv. Mater. 19, 2737 (2007).
http://dx.doi.org/10.1002/adma.200601850
9.
9. B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, Opt. Express 17, 1126 (2009).
http://dx.doi.org/10.1364/OE.17.001126
10.
10. M. Krishna, V. P. Kumar, N. Venkatramaiah, R. Venkatesan, and D. N. Rao, Appl. Phys. Lett. 98, 081106 (2011).
http://dx.doi.org/10.1063/1.3553500
11.
11. Y. Inoue and V. Ramamurthy, Chiral Photochemistry (CRC, 2004).
12.
12. X. Wang, H. Gan, H. Gan, T. Sun, B. Su, H. Fuchs, D. Vestweber, and S. Butz, Soft Matter 6, 3851 (2010).
http://dx.doi.org/10.1039/c0sm00151a
13.
13. Y. Xu, L. Zheng, X. Huang, Y. Cheng, and C. Zhu, Polymer 51, 994 (2010).
http://dx.doi.org/10.1016/j.polymer.2010.01.038
14.
14. Y. Zeng, C. Wang, F. Zhao, X. Huang, and Y. Cheng, Opt. Lett. 36, 2982 (2011).
15.
15. C. Toro, L. De Boni, N. Lin, F. Santoro, A. Rizzo, and F.E. Hernandez, Chirality 22, 202 (2010).
http://dx.doi.org/10.1002/chir.20867
16.
16. D. Ma, Q. Cai, and H. Zhang, Org. Lett. 5, 2453 (2003).
http://dx.doi.org/10.1021/ol0346584
17.
17. Y. Cui, O. R. Evans, H. L. Ngo, P. S. White, and W. Lin, Angew. Chem., Int. Ed. 41, 1159 (2002).
http://dx.doi.org/10.1002/1521-3773(20020402)41:7<1159::AID-ANIE1159>3.0.CO;2-5
18.
18. S. Allenmark, Chirality 15, 409 (2003).
http://dx.doi.org/10.1002/chir.10220
19.
19. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron 26, 760 (1990).
http://dx.doi.org/10.1109/3.53394
20.
20. S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, Chem. Phys. Lett. 369, 318 (2003).
http://dx.doi.org/10.1016/S0009-2614(02)02021-3
21.
21. B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, Appl. Phys. Lett. 92, 091118 (2008).
http://dx.doi.org/10.1063/1.2841713
22.
22. S. V. Rao, T. S. Prashant, D. Swain, T. Sarma, P. K. Panda, and S. P. Tewari, Chem. Phys. Lett. 514, 98 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.08.021
23.
23. S. V. Rao, N. Srinivas, and D. N. Rao, Chem. Phys. Lett. 361, 439 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00928-4
24.
24. T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Stryland, J. W. Perry, and D. R. Coulter, Appl. Phys. B: Lasers Opt. 54, 46 (1992).
http://dx.doi.org/10.1007/BF00331733
25.
25. U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, J. Appl. Phys. 104, 073107 (2008).
http://dx.doi.org/10.1063/1.2990056
26.
26. P. Poornesh, G. Umesh, P. K. Hegde, M. G. Manjunatha, K. B. Manjunatha, and A. V. Adhikari, Appl. Phys. B: Lasers Opt. 97, 117 (2009).
http://dx.doi.org/10.1007/s00340-009-3635-4
27.
27. S. Couris, E. Koudoumas, A. A. Ruth, and S. Leach, J. Phys. B 28, 4537 (1995).
http://dx.doi.org/10.1088/0953-4075/28/20/015
28.
28. G. Sreekumar, P. G. L. Frobel, C. I. Muneera, K. Sathiyamoorthy, C. Vijayan, and C. Mukherjee, J. Opt. A: Pure Appl. Opt. 11, 125204 (2009).
http://dx.doi.org/10.1088/1464-4258/11/12/125204
29.
29. T. He, W. Wei, L. Ma, R. Chen, S. Wu, H. Zhang, Y. Yang, J. Ma, L. Huang, and G. G. Gurzadyan, Small 8, 2163 (2012).
http://dx.doi.org/10.1002/smll.201200249
30.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/4/10.1063/1.4790391
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

CD spectrum of the polymer; inset: molecular structure of the polymer.

Image of FIG. 2.

Click to view

FIG. 2.

Linear absorption spectra (curve a, and curve b) of the pure THF solution and the chiral polymer in THF solution; the fluorescence spectrum (curve c) of the chiral polymer was excited at 350 nm; inset: the fluorescence decay images ((d) the fluorescence band: 405 nm; (e) the fluorescence band: 428 nm) were excited at 350 nm and the solid curves are the fitted curves.

Image of FIG. 3.

Click to view

FIG. 3.

Open aperture Z-scan data (dots) of the chiral polymer in THF at different peak intensities. The solid curves are fitted by pure TPA theory; the inset is the nonlinear transmission data T (0) vs I0 (balls). The solid line is just a guide for eyes.

Image of FIG. 4.

Click to view

FIG. 4.

Values of nonlinear optical absorption coefficient for different input peak intensities at fs 800 nm (balls); the solid line is the linear fit in the range of 1.43 GW/cm2 to 2.75 GW/cm2.

Image of FIG. 5.

Click to view

FIG. 5.

Sketch of five-level energy model which show both two-photon absorption and excited-state absorption.

Image of FIG. 6.

Click to view

FIG. 6.

Optical limiting response of the chiral polymer; the solid line is guide for observing.

Loading

Article metrics loading...

/content/aip/journal/apl/102/4/10.1063/1.4790391
2013-02-01
2014-04-20

Abstract

The nonlinear absorption and optical limiting properties of a chiral polymer were investigated by employing Z-scan technique in femtosecond regime. Reverse saturable absorption was observed in the polymer at 800 nm and the nonlinear absorption coefficient of 5.97 cm/GW was obtained at the irradiance of 2.75 GW/cm2. The nonlinear absorption coefficient versus the input irradiance was measured to meet a linear increasing function, giving evidence of two-photon induced excited-state absorption existing. Particularly, the chiral polymer was shown to possess a large ratio (∼251) of excited-state to ground-state absorption cross-section and a remarkable optical limiting behavior was achieved in it.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/4/1.4790391.html;jsessionid=6gacl5i5eeah4.x-aip-live-01?itemId=/content/aip/journal/apl/102/4/10.1063/1.4790391&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Two-photon induced excited-state absorption and optical limiting properties in a chiral polymer
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/4/10.1063/1.4790391
10.1063/1.4790391
SEARCH_EXPAND_ITEM