1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Elucidation of ambient gas effects in organic nano-floating-gate nonvolatile memory
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/5/10.1063/1.4790186
1.
1. S. R. Forrest, Nature 428, 911 (2004).
http://dx.doi.org/10.1038/nature02498
2.
2. T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, and T. Someya, Science 326, 1516 (2009).
http://dx.doi.org/10.1126/science.1179963
3.
3. Y. L. Guo, G. Yu, and Y. Q. Liu, Adv. Mater. 22, 4427 (2010).
http://dx.doi.org/10.1002/adma.201000740
4.
4. P. Heremans, G. H. Gelinck, R. Müller, K. J. Baeg, D. Y. Kim, and Y. Y. Noh, Chem. Mater. 23, 341 (2011).
http://dx.doi.org/10.1021/cm102006v
5.
5. W. L. Leong, N. Mathews, B. Tan, S. Vaidyanathan, F. Dötz, and S. Mhaisalkar, J. Mater. Chem. 21, 5203 (2011).
http://dx.doi.org/10.1039/c0jm03974h
6.
6. X. J. She, C. H. Liu, Q. J. Sun, X. Gao, and S. D. Wang, Org. Electron. 13, 1908 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.05.051
7.
7. S. T. Han, Y. Zhou, Z. X. Xu, V. A. L. Roy, and T. F. Hung, J. Mater. Chem. 21, 14575 (2011).
http://dx.doi.org/10.1039/c1jm12113h
8.
8. K. J. Baeg, Y. Y. Noh, H. Sirringhaus, and D. Y. Kim, Adv. Funct. Mater. 20, 224 (2010).
http://dx.doi.org/10.1002/adfm.200901677
9.
9. Y. M. Kim, S. J. Kim, and J. S. Lee, IEEE Electron Device Lett. 31, 503 (2010).
http://dx.doi.org/10.1109/LED.2010.2041743
10.
10. W. Wang and D. G. Ma, Appl. Phys. Lett. 96, 203304 (2010).
http://dx.doi.org/10.1063/1.3432667
11.
11. C. W. Tseng and Y. T. Tao, J. Am. Chem. Soc. 131, 12441 (2009).
http://dx.doi.org/10.1021/ja904882m
12.
12. M. Debucquoy, M. Rockele, J. Genoe, G. H. Gelinck, and P. Heremans, Org. Electron. 10, 1252 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.07.005
13.
13. D. Knipp and J. E. Northrup, Adv. Mater. 21, 2511 (2009).
http://dx.doi.org/10.1002/adma.200802173
14.
14. T. Hallam, C. M. Duffy, T. Minakata, M. Ando, and H. Sirringhaus, Nanotechnology 20, 025203 (2009).
http://dx.doi.org/10.1088/0957-4484/20/2/025203
15.
15. W. L. Kalb, K. Mattenberger, and B. Batlogg, Phys. Rev. B 78, 035334 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.035334
16.
16. G. Gu and M. G. Kane, Appl. Phys. Lett. 92, 053305 (2008).
http://dx.doi.org/10.1063/1.2841918
17.
17. A. Benor, A. Hoppe, W. Wagner, and D. Kinnp, Org. Electron. 8, 749 (2007).
http://dx.doi.org/10.1016/j.orgel.2007.06.005
18.
18. G. Gu, M. G. Kane, and S. C. Mau, J. Appl. Phys. 101, 014504 (2007).
http://dx.doi.org/10.1063/1.2403241
19.
19. K. P. Pernstich, D. Oberhoff, C. Goldmann, and B. Batlogg, Appl. Phys. Lett. 89, 213509 (2006).
http://dx.doi.org/10.1063/1.2396924
20.
20. C. Goldmann, D. J. Gundlach, and B. Batlogg, Appl. Phys. Lett. 88, 063501 (2006).
http://dx.doi.org/10.1063/1.2171479
21.
21. A. R. Reddy and M. Bendikov, Chem. Commun. 1179 (2006).
22.
22. O. D. Jurchescu, J. Bass, and T. T. M. Palstra, Appl. Phys. Lett. 87, 052102 (2005).
http://dx.doi.org/10.1063/1.2001130
23.
23. J. E. Northrup and M. L. Chabinyc, Phys. Rev. B 68, 041202 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.041202
24.
24. Y. Qiu, Y. C. Hu, G. F. Dong, L. D. Wang, J. F. Xie, and Y. N. Ma, Appl. Phys. Lett. 83, 1644 (2003).
http://dx.doi.org/10.1063/1.1604193
25.
25. S. Ogawa, T. Naijo, Y. Kimura, H. Ishii, and M. Niwano, Appl. Phys. Lett. 86, 252104 (2005).
http://dx.doi.org/10.1063/1.1949281
26.
26. S. D. Wang, T. Minari, T. Miyadera, K. Tsukagoshi, and Y. Aoyagi, Appl. Phys. Lett. 91, 203508 (2007).
http://dx.doi.org/10.1063/1.2813640
27.
27. S. M. Sze, Physics of Semiconductor Devices (Wiley Interscience, New York, 1981).
28.
28. H. Sirringhaus, Adv. Mater. 21, 3859 (2009).
http://dx.doi.org/10.1002/adma.200901136
29.
29. Y. L. Guo, C. A. Di, S. H. Ye, X. N. Sun, J. Zheng, Y. G. Wen, W. P. Wu, G. Yu, and Y. Q. Liu, Adv. Mater. 21, 1954 (2009).
http://dx.doi.org/10.1002/adma.200802430
30.
30.See supplementary material at http://dx.doi.org/10.1063/1.4790186 for morphology of nano-floating-gate, moisture effects of an OFET memory based on nano-floating-gate, and illumination responses in high vacuum and in air of an OFET memory based on nano-floating-gate. [Supplementary Material]
31.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/5/10.1063/1.4790186
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Scheme of a pentacene-based OFET nonvolatile memory utilizing Au nanoparticles covered by polystyrene thin layer as the nano-floating-gate. (b) Transfer characteristics of an OFET memory based on the nano-floating-gate, where an initial scan from V GS = 10 V to −40 V was measured first, followed by several times round-scans from V GS = 80 V (programming) to −80 V (erasing) and then back to 80 V. Upon exposure to pure N2, same round-scans were measured and similar memory characteristics are present. (c) Retention characteristics and (d) multiple programming/reading/erasing/reading endurance of the device (in high vacuum) shown in Fig. 1(b) .

Image of FIG. 2.

Click to view

FIG. 2.

(a) Transfer characteristics of an OFET memory based on the nano-floating-gate, where a round-scan from V GS = 80 V (programming) to −80 V (erasing) and then back to 80 V was measured in high vacuum first, followed by several times round-scans upon exposure to air, and an eventual round-scan after returning to high vacuum. (b) Transfer characteristics of an OFET memory, where a round-scan was measured in high vacuum first, followed by several times round-scans upon exposure to pure O2, and an eventual round-scan after returning to high vacuum. (c) Transfer characteristics of an OFET memory, where a round-scan was measured in high vacuum first, followed by 3 times continuous round-scans after exposure to pure O2 for 10 min. (d) Transfer characteristics of an OFET memory measured in pure O2, where a round-scan was measured in dark first, followed by a round-scan under illumination during programming (from V GS = 70 V to 80 V), and an eventual round-scan in dark again.

Image of FIG. 3.

Click to view

FIG. 3.

Schematic energy diagrams of (a) electron trapping process during programming and (b) hole trapping process during erasing in high vacuum; and of (c) electron trapping process during programming and (d) hole trapping process during erasing in pure O2 for OFET memories based on the nano-floating-gate. Short lines, solid circles and open circles denote O2-induced acceptor-like trap states, electrons and holes, respectively.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Transfer characteristics from V GS = 10 V to −20 V of an OFET memory operating in pure O2, where 15 times serial scans each followed by long time programming (about 50 s at V GS = 80 V) were measured in turn, and ended with a scan from V GS = 10 V to −40 V after single short time erasing (less than 1 s at V GS = −80 V). (b) Transfer characteristics of an OFET memory operating in high vacuum, started with a scan from V GS = 10 V to −20 V after short time programming (less than 1 s at V GS = 80 V), and ended with a scan from V GS = 10 V to −40 V after short time erasing (less than 1 s at V GS = −80 V). This cycle was repeated for 5 times, and initial transfer characteristics before programming/erasing is also shown for comparison.

Loading

Article metrics loading...

/content/aip/journal/apl/102/5/10.1063/1.4790186
2013-02-05
2014-04-20

Abstract

Pentacene-based organic field-effect transistor nonvolatile memories employing nano-floating-gate show high performance in vacuum, typically with field-effect mobility of 0.6 cm2/Vs, memory window of 45 V, reading ON/OFF ratio over 106, and excellent retention ability and programming/erasing endurance. The memory performance is unstable in air, which is demonstrated to result mainly from the device operation instability in O2. The O2-induced acceptor-like trap states reduce the electron supply in pentacene during programming, limiting the electron trapping into the nano-floating-gate and thus suppressing the positive threshold voltage shift. The corresponding hole trapping during erasing is not effectively influenced by the ambient gas effects.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/5/1.4790186.html;jsessionid=kqvkqt6s8psh.x-aip-live-06?itemId=/content/aip/journal/apl/102/5/10.1063/1.4790186&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Elucidation of ambient gas effects in organic nano-floating-gate nonvolatile memory
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/5/10.1063/1.4790186
10.1063/1.4790186
SEARCH_EXPAND_ITEM