1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Nanoscale structure of protamine/DNA complexes for gene delivery
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/5/10.1063/1.4790588
1.
1. G. Both, I. Alexander, S. Fletcher, T. J. Nicolson, J. E. Rasko, S. D. Wilton, and G. Symonds, Pathology 43, 642 (2011).
2.
2. P. P. Denèfle, Methods Mol. Biol. 737, 27 (2011).
http://dx.doi.org/10.1007/978-1-61779-095-9_2
3.
3. M. A. Kay, Nat. Rev. Genet. 12, 316 (2011).
http://dx.doi.org/10.1038/nrg2971
4.
4. C. J. Melief, J. J. O'Shea, and D. F. Stroncek, J. Transl. Med. 9, 107 (2011).
http://dx.doi.org/10.1056/NEJM198812223192527
5.
5. L. R. Brewer, M. Corzett, and R. Balhorn, Science 286, 120 (1999).
http://dx.doi.org/10.1126/science.286.5437.120
6.
6. F. L. Sorgi, S. Bhattacharya, and L. Huang, Gene Ther. 4, 961 (1997).
http://dx.doi.org/10.1038/sj.gt.3300484
7.
7. R. Balhorn, Genome Biol. 8, 227 (2007).
http://dx.doi.org/10.1186/gb-2007-8-9-227
8.
8. S. D. Laufer and T. Restle, Curr. Pharm. Des. 14, 3637 (2008).
http://dx.doi.org/10.2174/138161208786898806
9.
9. Y. Maitani and Y. Hattori, Expert Opin. Drug Deliv. 6, 1065 (2009).
http://dx.doi.org/10.1517/17425240903156366
10.
10. J. B. Rothbard, T. C. Jessop, R. S. Lewis, B. A. Murray, and P. A. Wende, J. Am. Chem. Soc. 126, 9506 (2004).
http://dx.doi.org/10.1021/ja0482536
11.
11. H. Mima, R. Tomoshige, T. Kanamori, Y. Tabata, S. Yamamoto, S. Ito, K. Tamai, and Y. J. Kaneda, J. Gene Med. 7, 888 (2005).
http://dx.doi.org/10.1002/jgm.735
12.
12. N. Makita, Y. Yoshikawa, Y. Takenaka, T. Sakaue, M. Suzuki, C. Watanabe, T. Kanai, T. Kanbe, T. Imanaka, and K. Yoshikawa, J. Phys. Chem. B 115, 4453 (2011).
http://dx.doi.org/10.1021/jp111331q
13.
13. D. E. Olins, A. L. Olins, and P. H. Von Hippel, J. Mol. Biol. 33, 265 (1968).
http://dx.doi.org/10.1016/0022-2836(68)90293-3
14.
14. P. Kreiss, B. Cameron, R. Rangara, P. Mailhe, O. Aguerre-Charriol, M. Airiau, D. Scherman, J. Crouzet, and B. Pitard, Nucleic Acids Res. 27(19), 3792 (1999).
http://dx.doi.org/10.1093/nar/27.19.3792
15.
15. H. Kamiya, J. Yamazaki, and H. Harashima, Gene Ther. 9, 1500 (2002).
http://dx.doi.org/10.1038/sj.gt.3301831
16.
16. W. Yin, P. Xiang, and Q. Li, Anal Biochem. 346(2), 289 (2005).
http://dx.doi.org/10.1016/j.ab.2005.08.029
17.
17. S. Ribeiro, J. Mairhofer, C. Madeira, M. M. Diogo, C. Lobato da Silva, G. Monteiro, R. Grabherr, and J. M. Cabral, Cell Reprogram. 4(2), 130 (2012).
18.
18. G. Caracciolo and H. Amenitsch, Eur. Biophys. J. 41, 815 (2012).
http://dx.doi.org/10.1007/s00249-012-0830-8
19.
19. G. Caracciolo, D. Pozzi, A. L. Capriotti, C. Marianecci, M. Carafa, C. Marchini, M. Montani, A. Amici, H. Amenitsch, M. A. Digman, E. Gratton, S. S. Sanchez, and A. Laganà, J. Med. Chem. 54(12), 4160 (2011).
http://dx.doi.org/10.1021/jm200237p
20.
20. T. T. Nguyen, I. Rouzina, and B. Shklovskii, J. Chem Phys. 112, 2562 (2000).
http://dx.doi.org/10.1063/1.480819
21.
21. P.-Y. Hsiao, J. Phys. Chem. B 112, 7347 (2008).
http://dx.doi.org/10.1021/jp800331b
22.
22. See supplementary material at http://dx.doi.org/10.1063/1.4790588 for radiation damage protection on DNA. [Supplementary Material]
23.
23. G. Beaucage, J. Appl. Crystallogr. 28, 717 (1995).
http://dx.doi.org/10.1107/S0021889895005292
24.
24. G. Beaucage, H. K. Kammler, and S. E. Pratsinis, J. Appl. Crystallogr. 37, 523 (2004).
http://dx.doi.org/10.1107/S0021889804008969
25.
25. V. H. Nicholas, P. M. Fred, and R. Balhorn, Biochemistry 33, 7528 (1994).
http://dx.doi.org/10.1021/bi00190a005
26.
26. M. J. Allen, E. M. Bradbury, and R. Balhorn, Nucleic Acids Res. 25, 2221 (1997).
http://dx.doi.org/10.1093/nar/25.11.2221
27.
27. G. Beaucage, J. Appl. Crystallogr. 29, 134 (1996).
http://dx.doi.org/10.1107/S0021889895011605
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/5/10.1063/1.4790588
Loading
/content/aip/journal/apl/102/5/10.1063/1.4790588
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/5/10.1063/1.4790588
2013-02-05
2014-10-31

Abstract

Understanding the internal packing of gene carriers is a key-factor to realize both gene protection during transport and de-complexation at the delivery site. Here, we investigate the structure of complexes formed by DNA fragments and protamine, applied in gene delivery. We found that complexes are charge- and size-tunable aggregates, depending on the protamine/DNA ratio, hundred nanometers in size. Their compactness and fractal structure depend on the length of the DNA fragments. Accordingly, on the local scale, the sites of protamine/DNA complexation assume different morphologies, seemingly displaying clumping ability for the DNA network only for shorter DNA fragments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/5/1.4790588.html;jsessionid=19i9lnciuuo3s.x-aip-live-03?itemId=/content/aip/journal/apl/102/5/10.1063/1.4790588&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nanoscale structure of protamine/DNA complexes for gene delivery
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/5/10.1063/1.4790588
10.1063/1.4790588
SEARCH_EXPAND_ITEM