1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/5/10.1063/1.4790642
1.
1. J. Meier, S. Dubail, R. Platz, P. Torres, U. Kroll, J. A. Anna Selvan, N. Pellaton Vaucher, Ch. Hof, D. Fischer, H. Keppner, R. Flückiger, A. Shah, V. Shklover, and K.-D. Ufert, Sol. Energy Mater. Sol. Cells 49, 35 (1997).
http://dx.doi.org/10.1016/S0927-0248(97)00173-6
2.
2. K. Yamamoto, T. Suzuki, M. Yoshimi, and A. Nakajima, Jpn. J. Appl. Phys., Part 2 36, L569 (1997).
http://dx.doi.org/10.1143/JJAP.36.L569
3.
3. M. Kambe, A. Takahashi, N. Taneda, K. Masumo, T. Oyama, and K. Sato, in Proceedings of 33rd IEEE Photovoltaics Specialist Conference, San Diego, 2008, pp. 609613.
4.
4. W. W. Wenas, A. Yamada, M. Konagai, and K. Takahashi, Jpn. J. Appl. Phys., Part 2 30, L441 (1991).
http://dx.doi.org/10.1143/JJAP.30.L441
5.
5. M. Despeisse, C. Battaglia, M. Boccard, G. Bugnon, M. Charrière, P. Cuony, S. Hänni, L. Löfgren, F. Meillaud, G. Parascandolo, T. Söderström, and C. Ballif, Phys. Status Solidi A 208, 1863 (2011).
http://dx.doi.org/10.1002/pssa.201026745
6.
6. M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Steibig, B. Rech, and M. Wuttig, J. Appl. Phys. 101, 074903 (2007).
http://dx.doi.org/10.1063/1.2715554
7.
7. B. Yan, G. Yue, L. Sivec, J. Owens-Mawson, J. Yang, and S. Guha, Sol. Energy Mater. Sol. Cells 104, 13 (2012).
http://dx.doi.org/10.1016/j.solmat.2012.04.036
8.
8. H. Sai, H. Jia, and M. Kondo, J. Appl. Phys. 108, 044505 (2010).
http://dx.doi.org/10.1063/1.3467968
9.
9. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarre, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, ACS Nano 6, 2790 (2012).
http://dx.doi.org/10.1021/nn300287j
10.
10. K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, Appl. Phys. Lett. 96, 213508 (2010).
http://dx.doi.org/10.1063/1.3435481
11.
11. F.-J. Haug, T. Söderström, M. Python, V. Terrazzoni-Daudrix, X. Niquille, and C. Ballif, Sol. Energy Mater. Sol. Cells 93, 884 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.10.018
12.
12. H. Sai and M. Kondo, J. Appl. Phys. 105, 094511 (2009).
http://dx.doi.org/10.1063/1.3108689
13.
13. M. Vanecek, O. Babchenko, A. Purkrt, J. Holovsky, N. Neykova, A. Poruba, Z. Remes, J. Meier, and U. Kroll, Appl. Phys. Lett. 98, 163503 (2011).
http://dx.doi.org/10.1063/1.3583377
14.
14. H. Sai, K. Saito, and M. Kondo, Appl. Phys. Lett 101, 173901 (2012).
http://dx.doi.org/10.1063/1.4761956
15.
15. H. Sai, K. Saito, and M. Kondo, IEEE J. Photovoltaics 3, 5 (2013).
http://dx.doi.org/10.1109/JPHOTOV.2012.2213800
16.
16. C. Haase and H. Stiebig, Appl. Phys. Lett. 91, 061116 (2007).
http://dx.doi.org/10.1063/1.2768882
17.
17. A. Čampa, J. Krč, and M. Topič, J. Appl. Phys. 105, 083107 (2009).
http://dx.doi.org/10.1063/1.3115408
18.
18. R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, J. Appl. Phys. 110, 013101 (2011).
http://dx.doi.org/10.1063/1.3602092
19.
19. X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwall, J. Michel, and L. C. Kimerling, Adv. Mater. 23, 843 (2011).
http://dx.doi.org/10.1002/adma.201003217
20.
20. Z. Yu, A. Raman, and S. Fan, Opt. Express 18, A366 (2010).
http://dx.doi.org/10.1364/OE.18.00A366
21.
21. S. E. Han and G. Chen, Nano Lett. 10, 4692 (2010).
http://dx.doi.org/10.1021/nl1029804
22.
22. M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, and C. Ballif, Sol. Energy Mater. Sol. Cells 93, 1714 (2009).
http://dx.doi.org/10.1016/j.solmat.2009.05.025
23.
23. H. Sai, Y. Kanamori, and M. Kondo, Appl. Phys. Lett. 98, 113502 (2011).
http://dx.doi.org/10.1063/1.3565249
24.
24. K. Söderstrom, G. Bugnon, F.-J. Haug, S. Nicolay, and C. Ballif, Sol. Energy Mater. Sol. Cells 101, 193 (2012).
http://dx.doi.org/10.1016/j.solmat.2012.02.003
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/5/10.1063/1.4790642
Loading
/content/aip/journal/apl/102/5/10.1063/1.4790642
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/5/10.1063/1.4790642
2013-02-08
2014-07-24

Abstract

Periodically textured back reflectors with hexagonal dimple arrays are applied to thin-film microcrystalline silicon (μc-Si:H) solar cells. When the textures have a moderate aspect ratio, the optimum period for obtaining a high short circuit current density (JSC ) is found to be equal to or slightly larger than the cell thickness. If the cell thickness exceeds the texture period, the cell surface tends to be flattened and texture-induced defects are generated, which constrain the improvement in JSC . Based on these findings, we have fabricated optimized μc-Si:H cells achieving a high efficiency exceeding 10% and a JSC of 30 mA/cm2.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/5/1.4790642.html;jsessionid=1rraqlgcag5yc.x-aip-live-03?itemId=/content/aip/journal/apl/102/5/10.1063/1.4790642&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/5/10.1063/1.4790642
10.1063/1.4790642
SEARCH_EXPAND_ITEM