1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/5/10.1063/1.4790642
1.
1. J. Meier, S. Dubail, R. Platz, P. Torres, U. Kroll, J. A. Anna Selvan, N. Pellaton Vaucher, Ch. Hof, D. Fischer, H. Keppner, R. Flückiger, A. Shah, V. Shklover, and K.-D. Ufert, Sol. Energy Mater. Sol. Cells 49, 35 (1997).
http://dx.doi.org/10.1016/S0927-0248(97)00173-6
2.
2. K. Yamamoto, T. Suzuki, M. Yoshimi, and A. Nakajima, Jpn. J. Appl. Phys., Part 2 36, L569 (1997).
http://dx.doi.org/10.1143/JJAP.36.L569
3.
3. M. Kambe, A. Takahashi, N. Taneda, K. Masumo, T. Oyama, and K. Sato, in Proceedings of 33rd IEEE Photovoltaics Specialist Conference, San Diego, 2008, pp. 609613.
4.
4. W. W. Wenas, A. Yamada, M. Konagai, and K. Takahashi, Jpn. J. Appl. Phys., Part 2 30, L441 (1991).
http://dx.doi.org/10.1143/JJAP.30.L441
5.
5. M. Despeisse, C. Battaglia, M. Boccard, G. Bugnon, M. Charrière, P. Cuony, S. Hänni, L. Löfgren, F. Meillaud, G. Parascandolo, T. Söderström, and C. Ballif, Phys. Status Solidi A 208, 1863 (2011).
http://dx.doi.org/10.1002/pssa.201026745
6.
6. M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Steibig, B. Rech, and M. Wuttig, J. Appl. Phys. 101, 074903 (2007).
http://dx.doi.org/10.1063/1.2715554
7.
7. B. Yan, G. Yue, L. Sivec, J. Owens-Mawson, J. Yang, and S. Guha, Sol. Energy Mater. Sol. Cells 104, 13 (2012).
http://dx.doi.org/10.1016/j.solmat.2012.04.036
8.
8. H. Sai, H. Jia, and M. Kondo, J. Appl. Phys. 108, 044505 (2010).
http://dx.doi.org/10.1063/1.3467968
9.
9. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarre, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, ACS Nano 6, 2790 (2012).
http://dx.doi.org/10.1021/nn300287j
10.
10. K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, Appl. Phys. Lett. 96, 213508 (2010).
http://dx.doi.org/10.1063/1.3435481
11.
11. F.-J. Haug, T. Söderström, M. Python, V. Terrazzoni-Daudrix, X. Niquille, and C. Ballif, Sol. Energy Mater. Sol. Cells 93, 884 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.10.018
12.
12. H. Sai and M. Kondo, J. Appl. Phys. 105, 094511 (2009).
http://dx.doi.org/10.1063/1.3108689
13.
13. M. Vanecek, O. Babchenko, A. Purkrt, J. Holovsky, N. Neykova, A. Poruba, Z. Remes, J. Meier, and U. Kroll, Appl. Phys. Lett. 98, 163503 (2011).
http://dx.doi.org/10.1063/1.3583377
14.
14. H. Sai, K. Saito, and M. Kondo, Appl. Phys. Lett 101, 173901 (2012).
http://dx.doi.org/10.1063/1.4761956
15.
15. H. Sai, K. Saito, and M. Kondo, IEEE J. Photovoltaics 3, 5 (2013).
http://dx.doi.org/10.1109/JPHOTOV.2012.2213800
16.
16. C. Haase and H. Stiebig, Appl. Phys. Lett. 91, 061116 (2007).
http://dx.doi.org/10.1063/1.2768882
17.
17. A. Čampa, J. Krč, and M. Topič, J. Appl. Phys. 105, 083107 (2009).
http://dx.doi.org/10.1063/1.3115408
18.
18. R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, J. Appl. Phys. 110, 013101 (2011).
http://dx.doi.org/10.1063/1.3602092
19.
19. X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwall, J. Michel, and L. C. Kimerling, Adv. Mater. 23, 843 (2011).
http://dx.doi.org/10.1002/adma.201003217
20.
20. Z. Yu, A. Raman, and S. Fan, Opt. Express 18, A366 (2010).
http://dx.doi.org/10.1364/OE.18.00A366
21.
21. S. E. Han and G. Chen, Nano Lett. 10, 4692 (2010).
http://dx.doi.org/10.1021/nl1029804
22.
22. M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, and C. Ballif, Sol. Energy Mater. Sol. Cells 93, 1714 (2009).
http://dx.doi.org/10.1016/j.solmat.2009.05.025
23.
23. H. Sai, Y. Kanamori, and M. Kondo, Appl. Phys. Lett. 98, 113502 (2011).
http://dx.doi.org/10.1063/1.3565249
24.
24. K. Söderstrom, G. Bugnon, F.-J. Haug, S. Nicolay, and C. Ballif, Sol. Energy Mater. Sol. Cells 101, 193 (2012).
http://dx.doi.org/10.1016/j.solmat.2012.02.003
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/5/10.1063/1.4790642
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

SEM images of a 1-μm-thick μc-Si:H solar cell fabricated on a honeycomb textured substrate with a period of 1.5 μm: (a) the substrate surface, (b) the cell surface, and (c) the cross section along the dashed line depicted in (b). (a) and (b) were taken at an inclination angle of 45°.

Image of FIG. 2.

Click to view

FIG. 2.

The relationship between the period of textured substrates and the JSC of μc-Si:H solar cells with i-layer thicknesses of ti  = 0.5, 1, 2, and 3 μm. For cells with ti  = 3 μm, a wide-gap (p)nc-SiOX layer was applied. Circles surrounded by dashed lines represent data obtained with 1-μm-thick cells on patterned Al substrates fabricated by anodic oxidation (see Ref. 13 ). Solid lines in this figure are guides to the eye.

Image of FIG. 3.

Click to view

FIG. 3.

EQE and absorption (1-R) spectra of μc-Si:H solar cells fabricated on textured substrates with P = 1.5 and 3.0 μm. (a) ti = 1 μm and (b) ti = 3 μm. EQE spectra obtained under a negative bias voltage of −3 V are shown by the dashed lines in (b).

Image of FIG. 4.

Click to view

FIG. 4.

The roughness ratio of the cell surface to the substrate surface as functions of the thickness of μc-Si:H cells fabricated on honeycomb textures with periods of 1.5, 2.5, and 3 μm. Solid lines are guides to the eye.

Image of FIG. 5.

Click to view

FIG. 5.

JSC and JEQE (−6 V) of the 3-μm-thick μc-Si:H cells fabricated on honeycomb-textured substrates as functions of the period. The solid lines are guides to the eye.

Image of FIG. 6.

Click to view

FIG. 6.

Bright-field STEM images of 3-μm-thick μc-Si:H cells on honeycomb-textured substrates with (a) P = 1.5 μm and (b) P = 3 μm. Black arrows in (a) indicate low-density defective parts that exist in the upper half of the cell. A magnified HAADF image is shown in the inset in panel (a) to show the low-density part (seen as a dark line) more clearly.

Image of FIG. 7.

Click to view

FIG. 7.

EQE and absorption spectra of the highest-efficiency cell obtained in this study.

Tables

Generic image for table

Click to view

Table I.

J-V parameters of μc-Si:H cells fabricated on a flat and honeycomb textures. All the cells have an active area of 1 cm2.

Loading

Article metrics loading...

/content/aip/journal/apl/102/5/10.1063/1.4790642
2013-02-08
2014-04-25

Abstract

Periodically textured back reflectors with hexagonal dimple arrays are applied to thin-film microcrystalline silicon (μc-Si:H) solar cells. When the textures have a moderate aspect ratio, the optimum period for obtaining a high short circuit current density (JSC ) is found to be equal to or slightly larger than the cell thickness. If the cell thickness exceeds the texture period, the cell surface tends to be flattened and texture-induced defects are generated, which constrain the improvement in JSC . Based on these findings, we have fabricated optimized μc-Si:H cells achieving a high efficiency exceeding 10% and a JSC of 30 mA/cm2.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/5/1.4790642.html;jsessionid=8ocolir0f5rs1.x-aip-live-02?itemId=/content/aip/journal/apl/102/5/10.1063/1.4790642&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/5/10.1063/1.4790642
10.1063/1.4790642
SEARCH_EXPAND_ITEM