1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Negative spin-exchange splitting in the exciton fine structure of AlN
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/5/10.1063/1.4790645
1.
1. O. Akimoto and H. Hasegawa, Phys. Rev. Lett. 20, 916 (1968).
http://dx.doi.org/10.1103/PhysRevLett.20.916
2.
2. P. G. Rohner, Phys. Rev. B 3, 433 (1971).
http://dx.doi.org/10.1103/PhysRevB.3.433
3.
3. M. Julier, J. Campo, B. Gil, J. P. Lascaray, and S. Nakamura, Phys. Rev. B 57, R6791 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.R6791
4.
4. D. W. Langer, R. N. Euwema, K. Era, and T. Koda, Phys. Rev. B 2, 4005 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.4005
5.
5. P. P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, Phys. Rev. B 64, 115201 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.115201
6.
6. R. Ishii, A. Kaneta, M. Funato, Y. Kawakami, and A. A. Yamaguchi, Phys. Rev. B 81, 155202 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.155202
7.
7. L. Chen, B. J. Skromme, R. F. Dalmau, R. Schlesser, Z. Sitar, C. Chen, W. Sun, J. Yang, M. A. Khan, M. L. Nakarmi, J. Y. Lin, and H.-X. Jiang, Appl. Phys. Lett. 85, 4334 (2004).
http://dx.doi.org/10.1063/1.1818733
8.
8. Y. Taniyasu, M. Kasu, and T. Makimoto, Nature (London) 441, 325 (2006).
http://dx.doi.org/10.1038/nature04760
9.
9. T. Oto, R. G. Banal, K. Kataoka, M. Funato, and Y. Kawakami, Nat. Photonics 4, 767 (2010).
http://dx.doi.org/10.1038/nphoton.2010.220
10.
10. M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, Appl. Phys. Express 5, 082101 (2012).
http://dx.doi.org/10.1143/APEX.5.082101
11.
11. M. Feneberg, B. Neuschl, K. Thonke, R. Collazo, A. Rice, Z. Sitar, R. Dalmau, J. Xie, S. Mita, and R. Goldhahn, Phys. Status Solidi A 208, 1520 (2011).
http://dx.doi.org/10.1002/pssa.201000947
12.
12. B. Neuschl, K. Thonke, M. Feneberg, S. Mita, A. Xie, R. Dalmau, R. Collazo, and Z. Sitar, Phys. Status Solidi B 249, 511 (2012).
http://dx.doi.org/10.1002/pssb.201100381
13.
13. M. Funato, K. Matsuda, R. G. Banal, R. Ishii, and Y. Kawakami, Appl. Phys. Express 5, 082001 (2012).
http://dx.doi.org/10.1143/APEX.5.082001
14.
14. E. Silveira, J. A. Freitas, M. Kneissl, D. W. Treat, N. M. Johnson, G. A. Slack, and L. J. Schowalter, Appl. Phys. Lett. 84, 3501 (2004)
http://dx.doi.org/10.1063/1.1738929
15.
15. E. Silveira, J. A. Freitas, O. J. Glembocki, G. A. Slack, and L. J. Schowalter, Phys. Rev. B 71, 041201R (2005).
http://dx.doi.org/10.1103/PhysRevB.71.041201
16.
16. H. Murotani, T. Kuronaka, Y. Yamada, T. Taguchi, N. Okada, and H. Amano, J. Appl. Phys. 105, 083533 (2009).
http://dx.doi.org/10.1063/1.3116183
17.
17. A. Sedhain, N. Nepal, M. L. Nakarmi, T. M. Al Tahtamouni, J. Y. Lin, H. X. Jiang, Z. Gu, and J. H. Edgar, Appl. Phys. Lett. 93, 041905 (2008).
http://dx.doi.org/10.1063/1.2965613
18.
18. M. Feneberg, R. A. R. Leute, B. Neuschl, K. Thonke, and M. Bickermann, Phys. Rev. B 82, 075208 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.075208
19.
19. M. Bickermann, B. M. Epelbaum, O. Filip, P. Heimann, S. Nagata, and A. Winnacker, Phys. Status Solidi C 7, 21 (2010).
http://dx.doi.org/10.1002/pssc.200982601
20.
20. C. Cobet, R. Goldhahn, W. Richter, and N. Esser, Phys. Status Solidi B 246, 1440 (2009).
http://dx.doi.org/10.1002/pssb.200945200
21.
21. R. Goldhahn, Acta Phys. Pol. A 104, 123 (2003).
22.
22. G. Rossbach, M. Feneberg, M. Röppischer, C. Werner, N. Esser, C. Cobet, T. Meisch, K. Thonke, A. Dadgar, J. Bläsing, A. Krost, and R. Goldhahn, Phys. Rev. B 83, 195202 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195202
23.
23. R. Pässler, Phys. Rev. B 66, 085201 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.085201
24.
24. B. Gil, D. Felbacq, B. Guizalm, and G. Bouchitté, Phys. Status Solidi B 249, 455 (2012).
http://dx.doi.org/10.1002/pssb.201100142
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/5/10.1063/1.4790645
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Imaginary parts of the dielectric function around the band gap at T = 10 K. The ordinary (blue) and extra-ordinary (red) dielectric functions are shown (open circles) together with a model line shape fit (dashed black line). For the extraordinary dielectric function, the single components adding up to are shown (red dashed curves). The black arrow marks the resonance energy of 6.032 eV. Please note that the peak maximum of at is at 17. The fit (dashed line) is chosen such to match the peak maximum.

Image of FIG. 2.

Click to view

FIG. 2.

Reflectivity calculated from the measured dielectric function (blue, continuous curve) in comparison to experimentally determined reflectivity (black, open circles). Remaining differences are mainly due to the better spectral resolution of the experiment implying the lamp. The imaginary part of the dielectric function is shown for comparison (red, this is the same spectrum as already shown in Fig. 1 ).

Image of FIG. 3.

Click to view

FIG. 3.

Comparison of and photoluminescence spectra under different polarization directions of the electric field vector. The scaling of the spectra is adjusted independently to make the free exciton region clearly visible. Bound exciton contributions are labelled by . Arrows mark the two free exciton bands at 6.032 and 6.040 eV.

Image of FIG. 4.

Click to view

FIG. 4.

Transition energies of the different free excitons measured for as a function of temperature. Open symbols represent peak energies from PL spectra, and filled red circles are results from fitting the dielectric function. The continuous red line is the best fit to the ellipsometric data using Pässler's equation. 23

Loading

Article metrics loading...

/content/aip/journal/apl/102/5/10.1063/1.4790645
2013-02-05
2014-04-21

Abstract

The exact energy position of the free exciton transition and thus the lowest band gap in bulk wurtzite AlN are still under discussion. By combined high resolution optical emission and absorption experiments on a sample with surface, we resolve the fine structure of the lowest energy free exciton and determine an electron-hole spin-exchange interaction constant of . This results in a low energy Γ1 exciton at 6.032 eV and a high energy Γ5 component at 6.040 eV. Only the latter one is observable for (0001) oriented AlN films due to selection rules.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/5/1.4790645.html;jsessionid=15ey8yvhy92wr.x-aip-live-02?itemId=/content/aip/journal/apl/102/5/10.1063/1.4790645&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Negative spin-exchange splitting in the exciton fine structure of AlN
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/5/10.1063/1.4790645
10.1063/1.4790645
SEARCH_EXPAND_ITEM