1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
A trilayer architecture for polymer photoconductors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/5/10.1063/1.4791595
1.
1. G. Li, R. Zhu, and Y. Yang, Nat. Photonics 6(3 ), 153 (2012).
http://dx.doi.org/10.1038/nphoton.2012.11
2.
2. S. Avasthi, S. Lee, Y. L. Loo, and J. C. Sturm, Adv. Mater. 23, 5762 (2011).
http://dx.doi.org/10.1002/adma.201102712
3.
3. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270(5243 ), 1789 (1995).
http://dx.doi.org/10.1126/science.270.5243.1789
4.
4. Y. Zhao, C. Di, X. Gao, Y. Hu, Y. Guo, L. Zhang, Y. Liu, J. Wang, W. Hu, and D. Zhu, Adv. Mater. 23(21 ), 2448 (2011).
http://dx.doi.org/10.1002/adma.201004588
5.
5. T. Sakanoue and H. Sirringhaus, Nature Mater. 9(9 ), 736 (2010).
http://dx.doi.org/10.1038/nmat2825
6.
6. H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, and A. Facchetti, Nature 457(7230 ), 679 (2009).
http://dx.doi.org/10.1038/nature07727
7.
7. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature 347(6293 ), 539 (1990).
http://dx.doi.org/10.1038/347539a0
8.
8. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 90, 5048 (2001).
http://dx.doi.org/10.1063/1.1409582
9.
9. J. Shinar and R. Shinar, J. Phys. D: Appl. Phys. 41, 133001 (2008).
http://dx.doi.org/10.1088/0022-3727/41/13/133001
10.
10. Y. Guo, G. Yu, and Y. Liu, Adv. Mater. 22(40 ), 4427 (2010).
http://dx.doi.org/10.1002/adma.201000740
11.
11. M. Ramuz, L. Bürgi, C. Winnewisser, and P. Seitz, Org. Electron. 9(3 ), 369 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.01.007
12.
12. T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, Appl. Phys. Lett. 92(21 ), 213303 (2008).
http://dx.doi.org/10.1063/1.2937018
13.
13. H. Tanaka, T. Yasuda, K. Fujita, and T. Tsutsui, Adv. Mater. 18(17 ), 2230 (2006).
http://dx.doi.org/10.1002/adma.200600163
14.
14. Y. Zhou, L. Wang, J. Wang, J. Pei, and Y. Cao, Adv. Mater. 20(19 ), 3745 (2008).
http://dx.doi.org/10.1002/adma.200800336
15.
15. Y. Guo, C. Du, G. Yu, C. Di, S. Jiang, H. Xi, J. Zheng, S. Yan, C. Yu, and W. Hu, Adv. Funct. Mater. 20(6 ), 1019 (2010).
http://dx.doi.org/10.1002/adfm.200901662
16.
16. B. Mukherjee, M. Mukherjee, Y. Choi, and S. Pyo, ACS Appl. Mater. Interfaces 2(6 ), 1614 (2010).
http://dx.doi.org/10.1021/am100127q
17.
17. B. Mukherjee, M. Mukherjee, Y. Choi, and S. Pyo, J. Phys. Chem. C 113(43 ), 18870 (2009).
http://dx.doi.org/10.1021/jp906102r
18.
18. X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, Science 325(5948 ), 1665 (2009).
http://dx.doi.org/10.1126/science.1176706
19.
19. T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, IEEE Trans. Electron Devices 52(11 ), 2502 (2005).
http://dx.doi.org/10.1109/TED.2005.857935
20.
20. T. Offermans, S. C. J. Meskers, and R. A. J. Janssen, J. Chem. Phys. 119, 10924 (2003).
http://dx.doi.org/10.1063/1.1619946
21.
21. S. R. Forrest, Nature 428(6986 ), 911 (2004).
http://dx.doi.org/10.1038/nature02498
22.
22. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford University Press, 1999).
23.
23. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, Nat. Nanotechnol. 7, 363 (2012).
http://dx.doi.org/10.1038/nnano.2012.60
24.
24. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, Adv. Mater. 18(5 ), 572 (2006).
http://dx.doi.org/10.1002/adma.200501825
25.
25. S. Cho, J. Yuen, J. Y. Kim, K. Lee, A. J. Heeger, and S. Lee, Appl. Phys. Lett. 92, 063505 (2008).
http://dx.doi.org/10.1063/1.2816913
26.
26. P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, Adv. Mater. 19(12 ), 1551 (2007).
http://dx.doi.org/10.1002/adma.200601093
27.
27. M. C. Hamilton, S. Martin, and J. Kanicki, IEEE Trans. Electron Devices 51(6 ), 877 (2004).
http://dx.doi.org/10.1109/TED.2004.829619
28.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/5/10.1063/1.4791595
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Structures of P3HT and PCBM. (b) Energy levels. (c) Single-layer device. (d) Bilayer device. (e) Trilayer device.

Image of FIG. 2.

Click to view

FIG. 2.

Absorption spectra of the TiOx, P3HT, PCBM, and P3HT:PCBM blend films.

Image of FIG. 3.

Click to view

FIG. 3.

I–V characteristics of the investigated devices in dark and under illumination (15.2 μW cm−2). (a) and (b) Single-layer devices. (c) and (d) P3HT based devices. (e) and (f) P3HT:PCBM based devices.

Image of FIG. 4.

Click to view

FIG. 4.

On-off switching properties of P3HT (a) and P3HT:PCBM (b) based devices under a bias of 10 V (illumination intensity is 15.2 μW cm−2). The ON and OFF time durations are both 20 s.

Tables

Generic image for table

Click to view

Table I.

Parameters of the investigated photoconductors under a bias of 10 V and light intensity of 15.2 μWcm−2.

Loading

Article metrics loading...

/content/aip/journal/apl/102/5/10.1063/1.4791595
2013-02-07
2014-04-21

Abstract

A trilayer architecture is designed for polymer photoconductors. In such a structure, photogenerated electrons in poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid ethyl ester (P3HT:PCBM) blend film will flow into a TiOx layer beneath and then diffuse into a underlying PCBM layer. Photogenerated holes and electrons are thus efficiently separated by the spacer TiOx, and, respectively, transport in P3HT and PCBM films, carrier recombination is thereby greatly suppressed. As a result, photocurrent of the PCBM/TiOx/P3HT:PCBM trilayer structure increases more than 200 times over that of the conventional P3HT:PCBM single layer device.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/5/1.4791595.html;jsessionid=7m8r15hhb1l1.x-aip-live-02?itemId=/content/aip/journal/apl/102/5/10.1063/1.4791595&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A trilayer architecture for polymer photoconductors
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/5/10.1063/1.4791595
10.1063/1.4791595
SEARCH_EXPAND_ITEM