1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
An efficient non-Lambertian organic light-emitting diode using imprinted submicron-size zinc oxide pillar arrays
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/5/10.1063/1.4791786
1.
1. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 75(1 ), 4 (1999).
http://dx.doi.org/10.1063/1.124258
2.
2. V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, Phys. Rev. B 58(7 ), 3730 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.3730
3.
3. R. Meerheim, M. Furno, S. Hofmann, B. Lussem, and K. Leo, Appl. Phys. Lett. 97(25 ), 253305 (2010).
http://dx.doi.org/10.1063/1.3527936
4.
4. S. Y. Kim and J. J. Kim, Org. Electron. 11(6 ), 1010 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.03.023
5.
5. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 90(10 ), 5048 (2001).
http://dx.doi.org/10.1063/1.1409582
6.
6. J. H. Zhou, N. Ai, L. Wang, H. Zheng, C. Luo, Z. X. Jiang, S. F. Yu, Y. Cao, and J. A. Wang, Org. Electron. 12(4 ), 648 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.01.018
7.
7. J. Lim, S. S. Oh, D. Y. Kim, S. H. Cho, I. T. Kim, S. H. Han, H. Takezoe, E. H. Choi, G. S. Cho, Y. H. Seo, S. O. Kang, and B. Park, Opt. Express 14(14 ), 6564 (2006).
http://dx.doi.org/10.1364/OE.14.006564
8.
8. C. J. Yang, S. H. Liu, H. H. Hsieh, C. C. Liu, T. Y. Cho, and C. C. Wu, Appl. Phys. Lett. 91(25 ), 253508 (2007).
http://dx.doi.org/10.1063/1.2827182
9.
9. Y. R. Do, Y. C. Kim, Y. W. Song, C. O. Cho, H. Jeon, Y. J. Lee, S. H. Kim, and Y. H. Lee, Adv. Mater. 15(14 ), 1214 (2003).
http://dx.doi.org/10.1002/adma.200304857
10.
10. K. Ishihara, M. Fujita, I. Matsubara, T. Asano, S. Noda, H. Ohata, A. Hirasawa, H. Nakada, and N. Shimoji, Appl. Phys. Lett. 90(11 ), 111114 (2007).
http://dx.doi.org/10.1063/1.2713237
11.
11. Y. Sun and S. R. Forrest, Nat. Photon. 2(8 ), 483 (2008).
http://dx.doi.org/10.1038/nphoton.2008.132
12.
12. T. W. Koh, J. M. Choi, S. Lee, and S. Yoo, Adv. Mater. 22(16 ), 1849 (2010).
http://dx.doi.org/10.1002/adma.200903375
13.
13. J. Choi, T. W. Koh, S. Lee, and S. Yoo, Appl. Phys. Lett. 100(23 ), 233303 (2012).
http://dx.doi.org/10.1063/1.4724306
14.
14. Y. G. Bi, J. Feng, Y. F. Li, Y. Jin, Y. F. Liu, Q. D. Chen, and H. B. Sun, Appl. Phys. Lett. 100(5 ), 053304 (2012).
http://dx.doi.org/10.1063/1.3680595
15.
15. W. J. Hyun, S. H. Im, O. O. Park, and B. D. Chin, Org. Electron. 13(4 ), 579 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.01.001
16.
16. K. Ishihara, M. Fujita, I. Matsubara, T. Asano, and S. Noda, Jpn. J. Appl. Phys. Part 2 45(4-7 ), L210 (2006).
http://dx.doi.org/10.1143/JJAP.45.L210
17.
17. Q. Y. Yue, W. Li, F. M. Kong, and K. Li, Adv. Mater. Sci. Eng. 2012, 985762 (2012).
http://dx.doi.org/10.1155/2012/985762
18.
18. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett. 67(21 ), 3114 (1995).
http://dx.doi.org/10.1063/1.114851
19.
19. M. J. Hampton, S. S. Williams, Z. L. Zhou, J. Nunes, D. H. Ko, J. L. Templeton, J. M. DeSimone, and E. T. Samulski, Proc. SPIE 7047, 70470T (2008).
http://dx.doi.org/10.1117/12.794890
20.
20. Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, and Y. R. Do, Appl. Phys. Lett. 82(21 ), 3779 (2003).
http://dx.doi.org/10.1063/1.1577823
21.
21. S. M. Jeong, F. Araoka, Y. Machida, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, Jpn. J. Appl. Phys. 47(6 ), 4566 (2008).
http://dx.doi.org/10.1143/JJAP.47.4566
22.
22. R. L. Pfleegor and L. Mandel, Phys. Rev. 159(5 ), 1084 (1967).
http://dx.doi.org/10.1103/PhysRev.159.1084
23.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/5/10.1063/1.4791786
Loading
/content/aip/journal/apl/102/5/10.1063/1.4791786
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/5/10.1063/1.4791786
2013-02-08
2014-08-20

Abstract

We report phosphorescent organic light-emitting diodes with a substantially improved light outcoupling efficiency and a wider angular distribution through applying a layer of zinc oxide periodic nanopillar arrays by pattern replication in non-wetting templates technique. The devices exhibited the peak emission intensity at an emission angle of 40° compared to 0° for reference device using bare ITO-glass. The best device showed a peak luminance efficiency of 95.5 ± 1.5 cd/A at 0° emission (external quantum efficiency—EQE of 38.5 ± 0.1%, power efficiency of 127 ± 1 lm/W), compared to that of the reference device, which has a peak luminance efficiency of 68.0 ± 1.4 cd/A (EQE of 22.0 ± 0.1%, power efficiency of 72 ± 1 lm/W).

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/5/1.4791786.html;jsessionid=afcer0mu3m0h.x-aip-live-06?itemId=/content/aip/journal/apl/102/5/10.1063/1.4791786&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: An efficient non-Lambertian organic light-emitting diode using imprinted submicron-size zinc oxide pillar arrays
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/5/10.1063/1.4791786
10.1063/1.4791786
SEARCH_EXPAND_ITEM