1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Identifying the efficient inter-conversion between singlet and triplet charge-transfer states by magneto-electroluminescence study
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/6/10.1063/1.4791562
1.
1. T. D. Nguyen, G. Hukic-Markosian, F. Wang, L. Wojcik, X. G. Li, E. Ehrenfreund, and Z. V. Vardeny, Nature Mater. 9(4 ), 345352 (2010).
http://dx.doi.org/10.1038/nmat2633
2.
2. S. A. Bagnich, U. Niedermeier, C. Melzer, W. Sarfert, and H. von Seggern, J. Appl. Phys. 106(11 ), 113702 (2009).
http://dx.doi.org/10.1063/1.3260249
3.
3. A. Buchschuster, T. D. Schmidt, and W. Brütting, Appl. Phys. Lett. 100(12 ), 123302 (2012).
http://dx.doi.org/10.1063/1.3696051
4.
4. P. Chen, M. Li, Q. Peng, F. Li, Y. Liu, Q. Zhang, Y. Zhang, and Z. Xiong, Org. Electron. 13(10 ), 17741778 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.05.019
5.
5. P. Desai, P. Shakya, T. Kreouzis, W. Gillin, N. Morley, and M. Gibbs, Phys. Rev. B 75(9 ), 094423 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.094423
6.
6. B. Ding, Y. Yao, X. Sun, X. Gao, Z. Xie, Z. Sun, Z. Wang, X. Ding, Y. Wu, X. Jin, W. Choy, C.-Q. Wu, and X. Hou, Phys. Rev. B 82(20 ), 205209 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.205209
7.
7. W. Gillin, S. Zhang, N. Rolfe, P. Desai, P. Shakya, A. Drew, and T. Kreouzis, Phys. Rev. B 82(19 ), 195208 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.195208
8.
8. B. Hu, L. Yan, and M. Shao, Adv. Mater. 21(14–15 ), 15001516 (2009).
http://dx.doi.org/10.1002/adma.200802386
9.
9. J. Kalinowski, M. Cocchi, D. Virgili, P. Di Marco, and V. Fattori, Chem. Phys. Lett. 380(5–6 ), 710715 (2003).
http://dx.doi.org/10.1016/j.cplett.2003.09.086
10.
10. Y. L. Lei, Y. Zhang, R. Liu, P. Chen, Q. L. Song, and Z. H. Xiong, Org. Electron. 10(5 ), 889894 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.04.016
11.
11. F. Li, L. Xin, S. Liu, and B. Hu, Appl. Phys. Lett. 97(7 ), 073301 (2010).
http://dx.doi.org/10.1063/1.3478014
12.
12. R. Liu, Y. Zhang, Y. L. Lei, P. Chen, and Z. H. Xiong, J. Appl. Phys. 105(9 ), 093719 (2009).
http://dx.doi.org/10.1063/1.3125507
13.
13. T. Nguyen, T. Basel, Y. J. Pu, X. G. Li, E. Ehrenfreund, and Z. Vardeny, Phys. Rev. B 85(24 ), 245437 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.245437
14.
14. Q. Peng, J. Sun, X. Li, M. Li, and F. Li, Appl. Phys. Lett. 99(3 ), 033509 (2011).
http://dx.doi.org/10.1063/1.3615305
15.
15. M. Shao, L. Yan, H. Pan, I. Ivanov, and B. Hu, Adv. Mater. 23(19 ), 22162220 (2011).
http://dx.doi.org/10.1002/adma.201100193
16.
16. L. Xin, C. Li, F. Li, S. Liu, and B. Hu, Appl. Phys. Lett. 95(12 ), 123306 (2009).
http://dx.doi.org/10.1063/1.3233973
17.
17. Y. Yao, W. Si, and C.-Q. Wu, Synth. Met. 161(7–8 ), 632636 (2011).
http://dx.doi.org/10.1016/j.synthmet.2010.11.049
18.
18. P. Bobbert, T. Nguyen, F. van Oost, B. Koopmans, and M. Wohlgenannt, Phys. Rev. Lett. 99(21 ), 216801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.216801
19.
19. B. Hu and Y. Wu, Nature Mater. 6(12 ), 985991 (2007).
http://dx.doi.org/10.1038/nmat2034
20.
20. S. Kersten, A. Schellekens, B. Koopmans, and P. Bobbert, Phys. Rev. Lett. 106(19 ), 197402 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.197402
21.
21. T.-H. Lee, J.-H. Li, W.-S. Huang, B. Hu, J. C. A. Huang, T.-F. Guo, and T.-C. Wen, Appl. Phys. Lett. 99(7 ), 073307 (2011).
http://dx.doi.org/10.1063/1.3627170
22.
22. S. Majumdar, H. Majumdar, H. Aarnio, D. Vanderzande, R. Laiho, and R. Österbacka, Phys. Rev. B 79(20 ), 201202R (2009).
http://dx.doi.org/10.1103/PhysRevB.79.201202
23.
23. W. Qin, S. Yin, K. Gao, and S. J. Xie, Appl. Phys. Lett. 100(23 ), 233304 (2012).
http://dx.doi.org/10.1063/1.4726185
24.
24. W. Wagemans and B. Koopmans, Phys. Status Solidi B 248(5 ), 10291041 (2011).
http://dx.doi.org/10.1002/pssb.201046383
25.
25. W. Wagemans, A. Schellekens, M. Kemper, F. Bloom, P. Bobbert, and B. Koopmans, Phys. Rev. Lett. 106(19 ), 196802 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.196802
26.
26. W.-S. Huang, T.-H. Lee, T.-F. Guo, J. C. A. Huang, and T.-C. Wen, Appl. Phys. Lett. 101(5 ), 053307 (2012).
http://dx.doi.org/10.1063/1.4742135
27.
27. J. Kalinowski, 11th International Conference on Electrical and Related Properties of Organic Solids (ERPOS-11), 13–17 July 2008, Piechowice, Poland (Mater. Sci. (Poland), 2009), Vol. 27(3), p. 735.
28.
28. J. Feng, F. Li, W. Gao, S. Liu, Y. Liu, and Y. Wang, Appl. Phys. Lett. 78(25 ), 3947 (2001).
http://dx.doi.org/10.1063/1.1379788
29.
29. K. Goushi, K. Yoshida, K. Sato, and C. Adachi, Nature Photon. 6, 253258 (2012).
http://dx.doi.org/10.1038/nphoton.2012.31
30.
30. M. Castellani and D. Berner, J. Appl. Phys. 102(2 ), 024509 (2007).
http://dx.doi.org/10.1063/1.2757204
31.
31. D. D. Gebler, Y. Z. Wang, J. W. Blatchford, S. W. Jessen, D.-K. Fu, T. M. Swager, A. G. MacDiarmid, and A. J. Epstein, Appl. Phys. Lett. 70(13 ), 1644 (1997).
http://dx.doi.org/10.1063/1.118657
32.
32. C. Adachi, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 56(9 ), 799 (1990).
http://dx.doi.org/10.1063/1.103177
33.
33. Z.-L. Li, H.-F. Meng, S.-F. Horng, C.-S. Hsu, L.-C. Chen, and S.-M. Chang, Appl. Phys. Lett. 84(24 ), 4944 (2004).
http://dx.doi.org/10.1063/1.1760599
34.
34. K. Goushi and C. Adachi, Appl. Phys. Lett. 101(2 ), 023306 (2012).
http://dx.doi.org/10.1063/1.4737006
35.
35. K. Itano, H. Ogawa, and Y. Shirota, Appl. Phys. Lett. 72(6 ), 636 (1998).
http://dx.doi.org/10.1063/1.120826
36.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/6/10.1063/1.4791562
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic energy-level diagrams for exciplex-based device (m-MTDATA: Alq3 device) and the exciton-based device (NPB/Alq3 device). And two kinds of emissions were proposed: (i) the relaxation of Alq3 exciton and (ii) the direct recombination of polaron pairs residing on the m-MTDATA molecule and Alq3 molecule; (b) the normalized EL spectra for the Alq3 exciton (533 nm) and the m-MTDATA: Alq3 exciplex (610 nm). The photoluminescence (PL) of m-MTDATA and Alq3 neat films are also presented; (c) the I-V characteristics for the m-MTDATA: Alq3 device and the NPB/Alq3 device. The insets show the molecular structures of m-MTDATA and Alq3; (d) the external quantum efficiency versus current density for the m-MTDATA: Alq3 device and the NPB/Alq3 device.

Image of FIG. 2.

Click to view

FIG. 2.

(a) The schematic of exciplex and exciton and their energy levels an external magnetic field. The ΔEST denotes the spin exchange energy between singlet and triplet excited states; (b) the MEL and (c) the MC for the m-MTDATA: Alq3 device and the NPB/Alq3 device.

Image of FIG. 3.

Click to view

FIG. 3.

(a) The voltage bias (red squares) and donor concentrations (blue circles) dependences of absolute MEL for the m-MTDATA: Alq3 device; (b) the voltage bias dependence and (c) the donor concentration dependence of EL spectra for m-MTDATA: Alq3 device.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Schematic energy-level diagrams for exciplexes with different bandgaps of m-MTDATA: Alq3, m-MTDATA: Bphen, m-MTDATA: BCP, and m-MTDATA: TPBI; (b) the EL spectra for exciplexes (4.5 V, 25% m-MTDATA); (c) the external quantum efficiency versus current density for these exciplexes. The insets show the molecular structures of Bphen, BCP, and TPBI; (d) the MELs for exciplexes.

Loading

Article metrics loading...

/content/aip/journal/apl/102/6/10.1063/1.4791562
2013-02-11
2014-04-18

Abstract

Using the magneto-electroluminescence (MEL) as a tool, we demonstrated the efficient inter-conversion between singlet and triplet charge-transfer (CT) states in exciplex-based organic light-emitting diodes (OLEDs). Results show that the MEL of exciplex-based device is larger than that of exciton-based device by a factor of 3.2. The emission of exciplex-based devices comes from the direct intermolecular electron-hole pair recombination and their spin exchange energy is much smaller, which causes the efficient inter-conversion between singlet and triplet states. This argument was supported by the consistent evolutions of the MEL and EL spectra versus applied bias and donor concentrations. Finally, the bandgap effects on the MEL as well as the external quantum efficiency of exciplex-based devices were discussed. Our findings of MEL may offer a feasible way to unravel underlying mechanisms that limit the EL efficiency in the OLEDs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/6/1.4791562.html;jsessionid=2w27odo5stiv6.x-aip-live-06?itemId=/content/aip/journal/apl/102/6/10.1063/1.4791562&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Identifying the efficient inter-conversion between singlet and triplet charge-transfer states by magneto-electroluminescence study
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/6/10.1063/1.4791562
10.1063/1.4791562
SEARCH_EXPAND_ITEM