1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/6/10.1063/1.4792057
1.
1. A. H. Zewail and J. M. Thomas, 4D Electron Microscopy (Imperial College Press, London, 2009).
2.
2. G. Sciaini and R. J. D. Miller, Rep. Prog. Phys. 74, 096101 (2011).
http://dx.doi.org/10.1088/0034-4885/74/9/096101
3.
3. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, Science 302, 1382 (2003).
http://dx.doi.org/10.1126/science.1090052
4.
4. G. Sciaini, M. Harb, S. G. Kruglik, T. Payer, C. T. Hebeisen, F. M. zu Heringdorf, M. Yamagushi, M. H. von Hoegen, R. Ernstorfer, and R. J. D. Miller, Nature (London) 458, 56 (2009).
http://dx.doi.org/10.1038/nature07788
5.
5. P. Baum, D.-S. Yang, and A. Zewail, Science 318, 788 (2007).
http://dx.doi.org/10.1126/science.1147724
6.
6. M. Eichberger, H. Schäfer, M. Krumova, M. Beyer, J. Demsar, H. Berger, G. Moriena, G. Sciani, and R. J. D. Miller, Nature (London) 468, 799 (2010).
http://dx.doi.org/10.1038/nature09539
7.
7. T. van Oudheusden, E. F. de Jong, S. B. van der Geer, W. P. E. M. Op't Root, O. J. Luiten, and B. J. Siwick, J. Appl. Phys. 102, 093501 (2007).
http://dx.doi.org/10.1063/1.2801027
8.
8. T. van Oudheusden, P. L. E. M. Pasmans, S. B. van der Geer, M. J. de Loos, M. J. van der Wiel, and O. J. Luiten, Phys. Rev. Lett. 105, 264801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.264801
9.
9. J. B. Hastings, F. M. Rudakov, D. H. Dowell, J. F. Schmerge, J. D. Cardoza, J. M. Castro, S. M. Gierman, H. Loos, and P. M. Weber, Appl. Phys. Lett. 89, 184109 (2006).
http://dx.doi.org/10.1063/1.2372697
10.
10. P. Musumeci, J. T. Moody, C. M. Scoby, M. S. Gutierrez, H. A. Bender, and N. S. Wilcox, Rev. Sci. Instrum. 81, 013306 (2010).
http://dx.doi.org/10.1063/1.3292683
11.
11. R. Li, W. Huang, Y. Du, L. Yan, Q. Du, J. Shi, J. Hua, H. Chen, T. Du, H. Xu et al., Rev. Sci. Instrum. 81, 036110 (2010).
http://dx.doi.org/10.1063/1.3361196
12.
12. Y. Murooka, N. Naruse, S. Sakakihara, M. Ishimaru, J. Yang, and K. Tanimura, Appl. Phys. Lett. 98, 251903 (2011).
http://dx.doi.org/10.1063/1.3602314
13.
13. J.-H. Han, Phys. Rev. ST Accel. Beams 14, 050101 (2011).
http://dx.doi.org/10.1103/PhysRevSTAB.14.050101
14.
14. P. Musumeci, J. T. Moody, C. M. Scoby, M. S. Gutierrez, and M. Westfall, Appl. Phys. Lett. 97, 063502 (2010).
http://dx.doi.org/10.1063/1.3478005
15.
15. A. G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P.-E. Masson-Laborde, B. Hou, I. Sokolov, G. Mourou, I. V. Glazyrin, W. Rozmus et al., Phys. Rev. Lett. 103, 235001 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.235001
16.
16. W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tòth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, Nat. Phys. 2, 696 (2006).
http://dx.doi.org/10.1038/nphys418
17.
17. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, Nature (London) 444, 737 (2006).
http://dx.doi.org/10.1038/nature05393
18.
18. C. Rechatin, J. Faure, A. Ben-Ismail, J. Lim, R. Fitour, A. Specka, H. Videau, A. Tafzi, F. Burgy, and V. Malka, Phys. Rev. Lett. 102, 164801 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.164801
19.
19. P. Kung, H.-C. Lihn, and H. Wiedmann, Phys. Rev. Lett. 73, 967 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.967
20.
20. S. Tokita, S. Inoue, S. Masuno, M. Hashida, and S. Sakabe, Appl. Phys. Lett. 95, 111911 (2009).
http://dx.doi.org/10.1063/1.3226674
21.
21. S. Tokita, M. Hashida, S. Inoue, T. Nishoji, K. Otani, and S. Sakabe, Phys. Rev. Lett. 105, 215004 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.215004
22.
22. E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys. 81, 1229 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.1229
23.
23. O. Lundh, J. Lim, C. Rechatin, L. Ammoura, A. Ben-Ismail, X. Davoine, G. Gallot, J.-P. Goddet, E. Lefebvre, V. Malka, and J. Faure, Nat. Phys. 7, 219 (2011).
http://dx.doi.org/10.1038/nphys1872
24.
24. K. Schmid, L. Veisz, F. Tavella, S. Benavides, R. Tautz, D. Herrmann, A. Buck, B. Hidding, A. Marcinkevicius, U. Schramm et al., Phys. Rev. Lett. 102, 124801 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.124801
25.
25. A. F. Lifschitz and V. Malka, New J. Phys. 14, 053045 (2012).
http://dx.doi.org/10.1088/1367-2630/14/5/053045
26.
26. Z.-H. He, B. Hou, J. H. Easter, K. Krushelnick, J. A. Nees, and A. G. R. Thomas, “High repetition-rate wakefield electron source generated by few-millijoule, 30 femtosecond laser pulses on a density downramp,” New J. Phys. (submitted).
27.
27. K. A. Tanaka, T. Yabuuchi, T. Sato, R. Kodama, Y. Kitagawa, T. Takahashi, T. Ikeda, Y. Honda, and S. Okuda, Rev. Sci. Instrum. 76, 013507 (2005).
http://dx.doi.org/10.1063/1.1824371
28.
28. Y. Glinec, J. Faure, A. Guemnie-Tafo, V. M. H. Monard, J. P. Larbre, V. D. Waele, J. L. Marignier, and M. Mostafavi, Rev. Sci. Instrum. 77, 103301 (2006).
http://dx.doi.org/10.1063/1.2360988
29.
29. S. Bulanov, N. Naumova, F. Pegoraro, and J. Sakai, Phys. Rev. E 58, R5257 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.R5257
30.
30. E. E. Fill, S. Trushin, R. Bruch, and R. Tommasini, Appl. Phys. B 81, 155 (2005).
http://dx.doi.org/10.1007/s00340-005-1904-4
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/6/10.1063/1.4792057
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Experimental set-up for electron beam characterization with an electron spectrometer. (b) Set-up for diffraction. The solenoid is placed 60 mm after the electron source. The distance between the sample and the scintillator (FOS) is 220 mm.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Unfocused beam after filtering through a 1 mm pinhole. (b) Best focus obtained using the solenoid. The FWHM is . (c) Horizontal lineout of the beam profile (red curve) and GPT simulation results (blue curve). (d) Normalized electron distribution of the unfocused beam (green curve), focused beam (blue curve), and simulation results of the focused beam (dashed blue curve). The top error bars represent the resolution of the spectrometer at various energies.

Image of FIG. 3.

Click to view

FIG. 3.

Electron diffraction patterns from a 10 nm thick polycrystalline Al foil. (a) The diffraction pattern is asymmetric because of a spatial chirp in the electron beam. (b) Symmetric diffraction pattern obtained by removing the spatial chirp on the electron beam.

Loading

Article metrics loading...

/content/aip/journal/apl/102/6/10.1063/1.4792057
2013-02-13
2014-04-20

Abstract

We show that electron bunches in the 50–100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/6/1.4792057.html;jsessionid=2um9pn7bih9tb.x-aip-live-01?itemId=/content/aip/journal/apl/102/6/10.1063/1.4792057&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/6/10.1063/1.4792057
10.1063/1.4792057
SEARCH_EXPAND_ITEM