1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Study of the fast photoswitching of spin crossover nanoparticles outside and inside their thermal hysteresis loop
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/6/10.1063/1.4792527
1.
1.See for general reviews, Spin Crossover in Transition Metal Compounds I-III, Topics in Current Chemistry Special Topic Vols. 233–235, edited by P. Gütlich and H. A. Goodwin (Springer, 2004).
2.
2. S. Decurtins, P. Gütlich, C. P. Köher, H. Spiering, and A. Hauser, Chem. Phys. Lett. 105, 1 (1984).
http://dx.doi.org/10.1016/0009-2614(84)80403-0
3.
3. A. Hauser, Chem. Phys. Lett. 124, 543 (1986).
http://dx.doi.org/10.1016/0009-2614(86)85073-4
4.
4. E. Freysz, S. Montant, S. Létard, and J.-F. Létard, Chem. Phys. Lett. 394, 318 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.07.017
5.
5. S. Bonhommeau, G. Molnár, A. Galet, A. Zwick, J.-A. Real, J. J. McGarvey, and A. Bousseksou, Angew. Chem., Int. Ed. 44, 4069 (2005).
http://dx.doi.org/10.1002/anie.200500717
6.
6. K. Binder and D. P. Landau, Phys. Rev. B 30, 1477 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.1477
7.
7. Th. Forestier, A. Kaiba, S. Pechev, D. Denux, Ph. Guionneau, C. Etrillard, N. Daro, E. Freysz, and J.-F. Létard, Chem. - Eur. J. 15, 6122 (2009).
http://dx.doi.org/10.1002/chem.200900297
8.
8. A. Bousseksou, G. Molnar, L. Salmon, and W. Nicolazzi, Chem. Soc. Rev. 40, 3313 (2011).
http://dx.doi.org/10.1039/c1cs15042a
9.
9. R. Bertoni, M. Lorenc, A. Tissot, M. Servol, M. L. Boillot, and E. Collet, Ang. Chem., Int. Ed. 51, 7485 (2012).
http://dx.doi.org/10.1002/anie.201202215
10.
10. J. Kröber, J.-P. Audire, R. Claude, E. Codjovi, O. Kahn, J. G. Haasnoot, F. Grolire, C. Jay, A. Bousseksou, J. Linars, F. Varret, and A. Gonthier-Vassal, Chem. Mater. 6, 1404 (1994).
http://dx.doi.org/10.1021/cm00044a044
11.
11. E. Coronado, J. R. Galn-Mascars, M. Monrabal-Capilla, J. Garca-Martnez, and P. Pardo-Ibez, Adv. Mater. 19, 1359 (2007).
http://dx.doi.org/10.1002/adma.200700559
12.
12. S. Titos-Padilla, J. M. Herrera, X.-W. Chen, J. J. Delgado, and E. Colacio, Angew. Chem., Int. Ed. 50, 3290 (2011).
http://dx.doi.org/10.1002/anie.201007847
13.
13. C. Etrillard, Ph.D. thesis, Université Bordeaux 1, 20 December 2011.
14.
14. G. Galle, D. Deldique, J. Degert, Th. Forestier, J. F. Létard, and E. Freysz, Appl. Phys. Lett. 96, 041907 (2010).
http://dx.doi.org/10.1063/1.3294312
15.
15. O. Fouché, J. Degert, G. Jonusauskas, N. Daro, J. F. Létard, and E. Freysz, Phys. Chem. Chem. Phys. 12, 3044 (2010).
http://dx.doi.org/10.1039/b921984f
16.
16. Y. A. Tobon, C. Etrillard, O. Nguyen, J.-F. Létard, V. Faramarzi, J.-F. Dayen, B. Doudin, D. M. Bassani, and F. Guillaume, Eur. J. Inorg. Chem. 2012, 5837.
http://dx.doi.org/10.1002/ejic.201200562
17.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/6/10.1063/1.4792527
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) TEM image of the nanoparticles. (b)Width distribution of the nanoparticles. (c)Length distribution of the nanoparticles.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Thermal hysteresis loop recorded using the nanoparticles. (b)Reflectivity spectra of the nanoparticles in the HS and LS states. Solid line in black, the spectrum obtained by subtracting the LS spectrum from the HS spectrum.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Evolution of the reflectivity of the sample at T = 338 K in the LS state after an excitation by a single laser pulse. The temperature of the sample is initially below the thermal hysteresis loop. (b) Zoom on the reflectivity change on the nanosecond time scale ( , if the sample is brought in the HS state). The filled circles represent the experimental data. The solid line represents a fit considering an exponential growth law.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Evolution of the reflectivity of the sample at T = 365 K after an excitation by a single pulse. The sample is set in the LS state within its thermal hysteresis loop. (b) Evolution of the reflectivity of the sample when the sample is excited by a second pulse.

Image of FIG. 5.

Click to view

FIG. 5.

Raman spectra of the sample in the LS and HS states. The circles present the Raman spectrum of the sample initially set within the LS state in its thermal hysteresis loop, and then excited by a single laser pulse.

Loading

Article metrics loading...

/content/aip/journal/apl/102/6/10.1063/1.4792527
2013-02-13
2014-04-25

Abstract

We have studied the low spin to high spin phase transition induced by nanosecond laser pulses outside and within the thermal hysteresis loop of the [Fe(Htrz)2 trz](BF4)2-H2O spin crossover nanoparticles. We demonstrate that, whatever the temperature of the compound, the photo-switching is achieved in less than 12.5 ns. Outside the hysteresis loop, the photo-induced high spin state remains up to 100 μs and then relaxes. Within the thermal hysteresis loop, the photo-induced high spin state remains as long as the temperature of the sample is kept within the thermal loop. A Raman study indicates that the photo-switching can be completed using single laser pulse excitation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/6/1.4792527.html;jsessionid=f58t0iptb6ja.x-aip-live-02?itemId=/content/aip/journal/apl/102/6/10.1063/1.4792527&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Study of the fast photoswitching of spin crossover nanoparticles outside and inside their thermal hysteresis loop
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/6/10.1063/1.4792527
10.1063/1.4792527
SEARCH_EXPAND_ITEM