1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Two-surface-plasmon-polariton-absorption based nanolithography
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/6/10.1063/1.4792591
1.
1. S. Wurm, J. Photopolym. Sci. Technol. 22(1), 31 (2009).
http://dx.doi.org/10.2494/photopolymer.22.31
2.
2. C. Wagner and N. Harned, Nat. Photonics 4(1), 24 (2010).
http://dx.doi.org/10.1038/nphoton.2009.251
3.
3. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, Nature 412(6848), 697 (2001).
http://dx.doi.org/10.1038/35089130
4.
4. K. S. Lee, D. Y. Yang, S. H. Park, and R. H. Kim, Polym. Adv. Technol. 17(2), 72 (2006).
http://dx.doi.org/10.1002/pat.664
5.
5. Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, Plasmonics 6(3), 565 (2011).
http://dx.doi.org/10.1007/s11468-011-9237-0
6.
6. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4(6), 1085 (2004).
http://dx.doi.org/10.1021/nl049573q
7.
7. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Science 272(5258), 85 (1996).
http://dx.doi.org/10.1126/science.272.5258.85
8.
8. D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, Appl. Phys. Lett. 90(7), 071106 (2007).
http://dx.doi.org/10.1063/1.2535504
9.
9. H. B. Sun and S. Kawata, Adv. Polym. Sci. 170, 169 (2004).
http://dx.doi.org/10.1007/b94405
10.
10. T. Tanaka, H. B. Sun, and S. Kawata, Appl. Phys. Lett. 80(2), 312 (2002).
http://dx.doi.org/10.1063/1.1432450
11.
11. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
12.
12. L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, Sci. Rep. 1, 175 (2011).
http://dx.doi.org/10.1038/srep00175
13.
13. L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, Appl. Phys. Lett. 91(8), 081101 (2007).
http://dx.doi.org/10.1063/1.2772756
14.
14. J. B. Pendry, Phys. Rev. Lett. 85(18), 3966 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3966
15.
15. N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308(5721), 534 (2005).
http://dx.doi.org/10.1126/science.1108759
16.
16. Z. Jacob, L. V. Alekseyev, and E. Narimanov, Opt. Express 14(18), 8247 (2006).
http://dx.doi.org/10.1364/OE.14.008247
17.
17. X. Zhang and Z. Liu, Nature Mater. 7(6), 435 (2008).
http://dx.doi.org/10.1038/nmat2141
18.
18. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, Nat. Commun. 1, 143 (2010).
http://dx.doi.org/10.1038/ncomms1148
19.
19. Z. W. Liu, Q. H. Wei, and X. Zhang, Nano Lett. 5(5), 957 (2005).
http://dx.doi.org/10.1021/nl0506094
20.
20. D. B. Shao and S. C. Chen, Appl. Phys. Lett. 86(25), 253107 (2005).
http://dx.doi.org/10.1063/1.1951052
21.
21. X. Yang, B. Zeng, C. Wang, and X. Luo, Opt. Express 17(24), 21560 (2009).
http://dx.doi.org/10.1364/OE.17.021560
22.
22. K. V. Sreekanth and V. M. Murukeshan, Appl. Phys. A: Mater. Sci. Process. 101(1), 117 (2010).
http://dx.doi.org/10.1007/s00339-010-5769-y
23.
23. E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, 1985).
24.
24. D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. Lett. 97(5), 053002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.053002
25.
25. A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, Phys. Rev. B 82(3), 035411 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.035411
26.
26. P. Berini and I. De Leon, Nat. Photonics 6(1), 16 (2012).
http://dx.doi.org/10.1038/nphoton.2011.285
27.
27. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, Nano Lett. 6(3), 355 (2006).
http://dx.doi.org/10.1021/nl052322c
28.
28. K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, Appl. Phys. Lett. 99(1), 011107 (2011).
http://dx.doi.org/10.1063/1.3606505
29.
29.SU-8 2000 Datasheet, Micro Chem. Available at: http://microchem.com/pdf/SU-82000DataSheet2000_5thru2015Ver4.pdf.
30.
30. L. Feng, A. Mizrahi, S. Zamek, Z. W. Liu, V. Lomakin, and Y. Fainman, ACS Nano 5(6), 5100 (2011).
http://dx.doi.org/10.1021/nn201181p
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/6/10.1063/1.4792591
Loading
/content/aip/journal/apl/102/6/10.1063/1.4792591
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/6/10.1063/1.4792591
2013-02-14
2014-12-21

Abstract

We propose and demonstrate the two-surface-plasmon-polariton-absorption (TSPPA), which is a nonlinear effect by absorbing two surface-plasmon-polaritons (SPPs), as well as a nanolithography technique based on TSPPA. The TSPPA effect is verified with the plasmonic interference structure to exclude the possibility of two photon absorption. Benefiting from the short wavelength and the field enhancement of SPP as well as the selective transfer of plasmonic patterns into photoresist induced by TSPPA, resist strips with the linewidth of ∼λ0/11 are achieved by a single illumination on the plasmonic mask with the femtosecond laser for only 15 s, which shows great potential for future large-area nanolithography.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/6/1.4792591.html;jsessionid=as5soj1nq738f.x-aip-live-03?itemId=/content/aip/journal/apl/102/6/10.1063/1.4792591&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Two-surface-plasmon-polariton-absorption based nanolithography
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/6/10.1063/1.4792591
10.1063/1.4792591
SEARCH_EXPAND_ITEM