1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Lasing in nanoimprinted two-dimensional photonic crystal band-edge lasers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/7/10.1063/1.4790646
1.
1. T. Rabe, M. Hoping, D. Schneider, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, P. Hinze, B. S. Nehls, U. Scherf, T. Farrell, and T. Riedl, Adv. Funct. Mater. 15, 1188 (2005).
http://dx.doi.org/10.1002/adfm.200500023
2.
2. P. Gorrn, T. Rabe, T. Riedl, W. Kowalsky, F. Galbrecht, and U. Scherf, Appl. Phys. Lett. 89, 161113 (2006).
http://dx.doi.org/10.1063/1.2360936
3.
3. H. Nakanotani, S. Akiyama, D. Ohnishi, M. Moriwake, M. Yahiro, T. Yoshihara, S. Tobita, and C. Adachi, Adv. Funct. Mater. 17, 2328 (2007).
http://dx.doi.org/10.1002/adfm.200700069
4.
4. J. R. Lawrence, E. B. Namdas, G. J. Richards, P. L. Burn, and I. D. W. Samuel, Adv. Mater. 19, 3000 (2007).
http://dx.doi.org/10.1002/adma.200602392
5.
5. I. D. W. Samuel and G. A. Turnbull, Chem. Rev. 107, 1272 (2007).
http://dx.doi.org/10.1021/cr050152i
6.
6. B. K. Yap, R. D. Xia, M. Campoy-Quiles, P. N. Stavrinou, and D. D. C. Bradley, Nature Mater. 7, 376 (2008).
http://dx.doi.org/10.1038/nmat2165
7.
7. S. Boscolo, M. Midrio, and T. F. Krauss, Opt. Lett. 27, 1001 (2002).
http://dx.doi.org/10.1364/OL.27.001001
8.
8. Z. X. Qiang, W. D. Zhou, and R. A. Soref, Opt. Express 15, 18231831 (2007).
http://dx.doi.org/10.1364/OE.15.001823
9.
9. G. Chen and J. U. Kang, Opt. Lett. 30, 16561658 (2005).
http://dx.doi.org/10.1364/OL.30.001656
10.
10. D. Englund, H. Altug, I. Fushman, and J. Vuckovic, Appl. Phys. Lett. 91, 071126 (2007).
http://dx.doi.org/10.1063/1.2770767
11.
11. S. Y. Chou, P. R. Krauss, and P. J. Resnstrom, Appl. Phys. Lett. 67, 3114 (1995).
http://dx.doi.org/10.1063/1.114851
12.
12. A. Genua, J. A. Alduncín, J. A. Pomposo, H. Grande, N. Kehagias, V. Reboud, C. M. Sotomayor, I. Mondragon, and D. Mecerreyes, Nanotechnology 18, 215301 (2007).
http://dx.doi.org/10.1088/0957-4484/18/21/215301
13.
13. V. Reboud, A. Z. Khokhar, B. Sepúlveda, D. Dudek, T. Kehoe, J. Cuffe, N. Kehagias, M. Lira-Cantu, N. Gadegaard, V. Grasso, V. Lambertini and C. M. Sotomayor Torres, Nanoscale 4, 34953500 (2012).
http://dx.doi.org/10.1039/c2nr12068b
14.
14. S.-W. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, IEEE Photon. Technol. Lett. 17(10 ), 21222124 (2005).
http://dx.doi.org/10.1109/LPT.2005.854404
15.
15. D.-H. Kim, J.-G. Im, S.-S. Lee, S.-W. Ahn, and K.-D. Lee, IEEE Photon. Technol. Lett. 17(11 ), 23522354 (2005).
http://dx.doi.org/10.1109/LPT.2005.857606
16.
16. C. L. C. Smith, J. U. Lind, C. H. Nielsen, M. B. Christiansen, T. Buss, N. B. Larsen, and A. Kristensen, Opt. Lett. 36, 13921394 (2011).
http://dx.doi.org/10.1364/OL.36.001392
17.
17. E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, Adv. Mater. 21, 799802 (2009).
http://dx.doi.org/10.1002/adma.200802436
18.
18. V. Reboud, P. Lovera, N. Kehagias, M. Zelsmann, C. Schuster, F. Reuther, G. Gruetzner, G. Redmond, and C. M. Sotomayor Torres, Appl. Phys. Lett. 91, 151101 (2007).
http://dx.doi.org/10.1063/1.2798250
19.
19. V. Reboud, N. Kehagias, M. Striccoli, T. Placido, A. Panniello, M. L. Curri, M. Zelsmann, F. Reuther, G. Gruetzner, and C. M. Sotomayor Torres, J. Vac. Sci. Technol. B 25, 26422644 (2007).
http://dx.doi.org/10.1116/1.2789445
20.
20. N. Kehagias, V. Reboud, G. Chansin, M. Zelsmann, C. Jeppesen, F. Reuther, C. Schuster, M. Kubenz, G. Gruetzner, and C. M. Sotomayor Torres, J. Vac. Sci. Technol. B 24, 30023005 (2006).
http://dx.doi.org/10.1116/1.2388962
21.
21. F.-H. Ko, L.-Y. Weng, C.-J. Ko, and T.-C. Chu, Microelectron. Eng. 83, 864 (2006).
http://dx.doi.org/10.1016/j.mee.2006.01.009
22.
22. M. Bender, M. Otto, B. Hadam, B. Spangenberg, and H. Kurz, Microelectron. Eng. 61–62, 407 (2002).
http://dx.doi.org/10.1016/S0167-9317(02)00470-7
23.
23. V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, Nature 447, 441 (2007).
http://dx.doi.org/10.1038/nature05839
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/7/10.1063/1.4790646
Loading
/content/aip/journal/apl/102/7/10.1063/1.4790646
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/7/10.1063/1.4790646
2013-02-19
2014-10-24

Abstract

We demonstrate optically pumped polymer band-edge lasers based on a two-dimensional photonic crystal slab fabricated by nanoimprint lithography (NIL). Lasing was obtained at the photonic band-edge, where the light exhibits a low group velocity at the Γ point of the triangular lattice photonic crystal band structure. The active medium was composed of a dye chromophore-loaded polymer matrix directly patterned in a single step by nanoimprint lithography. Plane-wave and finite difference time domain algorithms were used to predict experimental lasing frequencies and the lasing thresholds obtained at different Γ points. A low laser threshold of 3 μJ/mm2 was achieved in a defect-free photonic crystal thus showing the suitability of nanoimprint lithography to produce cost-efficient optically pumped lasers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/7/1.4790646.html;jsessionid=1k1aa26haoo3a.x-aip-live-06?itemId=/content/aip/journal/apl/102/7/10.1063/1.4790646&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Lasing in nanoimprinted two-dimensional photonic crystal band-edge lasers
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/7/10.1063/1.4790646
10.1063/1.4790646
SEARCH_EXPAND_ITEM